
Sympa
Mailing Lists Management Software

version 5.2.2

Serge Aumont, Olivier Salaün, Christophe Wolfhugel,

24 August 2006

2

Table des matières

1 Presentation 13
1.1 License . 14
1.2 Features . 14
1.3 Project directions . 16
1.4 History . 16
1.5 Authors and credits . 17
1.6 Mailing lists and support . 18

2 what does Sympa consist of ? 19
2.1 Organization . 19
2.2 Binaries . 21
2.3 Configuration files . 21
2.4 Spools . 22
2.5 Roles and privileges . 23

2.5.1 (Super) listmasters . 23
2.5.2 (Robot) listmasters . 23
2.5.3 Privileged list owners . 23
2.5.4 (Basic) list owners . 23
2.5.5 Moderators (also called Editors) 24
2.5.6 Subscribers (or list members) 24

3 Installing Sympa 25
3.1 Obtaining Sympa, related links . 25
3.2 Prerequisites . 25

3.2.1 System requirements . 26
3.2.2 Install Berkeley DB (NEWDB) 26
3.2.3 Install PERL and CPAN modules 27
3.2.4 Required CPAN modules . 27
3.2.5 Create a UNIX user . 28

3.3 Compilation and installation . 29
3.3.1 Choosing directory locations 31

3.4 Robot aliases . 31
3.5 Logs . 31

4 Running Sympa 33
4.1 sympa.pl . 33
4.2 INIT script . 34
4.3 Stopping Sympa and signals . 35

3

4 TABLE DES MATIÈRES

5 Upgrading Sympa 37
5.1 Incompatible changes . 37
5.2 CPAN modules update . 38
5.3 Database structure update . 39
5.4 Preserving your customizations . 40
5.5 Running 2 Sympa versions on a single server 40
5.6 Moving to another server . 41

6 Mail aliases 43
6.1 Robot aliases . 43
6.2 List aliases . 44
6.3 Alias manager . 45
6.4 Virtual domains . 46

7 sympa.conf parameters 47
7.1 Site customization . 47

7.1.1 domain . 47
7.1.2 email . 48
7.1.3 listmaster . 48
7.1.4 listmaster email . 48
7.1.5 wwsympa url . 48
7.1.6 soap url . 49
7.1.7 spam protection . 49
7.1.8 web archive spam protection 49
7.1.9 color 0, color 1 .. color 15 49
7.1.10 dark color light color text color bg color

error color selected color shaded color 50
7.1.11 logo html definition . 50
7.1.12 css path . 50
7.1.13 css url . 50
7.1.14 cookie . 51
7.1.15 create list . 51
7.1.16 global remind . 51

7.2 Directories . 51
7.2.1 home . 51
7.2.2 etc . 52

7.3 System related . 52
7.3.1 syslog . 52
7.3.2 log level . 52
7.3.3 log socket type . 52
7.3.4 pidfile . 53
7.3.5 umask . 53

7.4 Sending related . 53
7.4.1 distribution mode . 53
7.4.2 maxsmtp . 53
7.4.3 log smtp . 54
7.4.4 max size . 54
7.4.5 misaddressed commands 54
7.4.6 misaddressed commands regexp 54
7.4.7 nrcpt . 55

TABLE DES MATIÈRES 5

7.4.8 avg . 55
7.4.9 sendmail . 55
7.4.10 sendmail args . 55
7.4.11 sendmail aliases . 55
7.4.12 rfc2369 header fields 56
7.4.13 remove headers . 56
7.4.14 anonymous headers fields 56
7.4.15 list check smtp . 56
7.4.16 list check suffixes . 56
7.4.17 urlize min size . 57

7.5 Quotas . 57
7.5.1 default shared quota . 57
7.5.2 default archive quota 57

7.6 Spool related . 57
7.6.1 spool . 57
7.6.2 queue . 57
7.6.3 queuedistribute . 58
7.6.4 queuemod . 58
7.6.5 queuedigest . 58
7.6.6 queueauth . 58
7.6.7 queueoutgoing . 58
7.6.8 queuetopic . 58
7.6.9 queuebounce . 59
7.6.10 queuetask . 59
7.6.11 tmpdir . 59
7.6.12 sleep . 59
7.6.13 clean delay queue . 59
7.6.14 clean delay queuemod . 60
7.6.15 clean delay queueauth 60
7.6.16 clean delay queuesubscribe 60
7.6.17 clean delay queuetopic 60

7.7 Internationalization related . 60
7.7.1 localedir . 60
7.7.2 supported lang . 61
7.7.3 lang . 61
7.7.4 web recode to . 61

7.8 Bounce related . 61
7.8.1 verp rate . 61
7.8.2 welcome return path . 62
7.8.3 remind return path . 62
7.8.4 return path suffix . 62
7.8.5 expire bounce task . 62
7.8.6 purge orphan bounces task 63
7.8.7 eval bouncers task . 63
7.8.8 process bouncers task 63
7.8.9 minimum bouncing count 63
7.8.10 minimum bouncing period 63
7.8.11 bounce delay . 64
7.8.12 default bounce level1 rate 64
7.8.13 default bounce level2 rate 64

6 TABLE DES MATIÈRES

7.8.14 bounce email prefix . 64
7.8.15 bounce warn rate . 65
7.8.16 bounce halt rate . 65
7.8.17 default remind task . 65

7.9 Tuning . 65
7.9.1 cache list config . 65
7.9.2 sympa priority . 66
7.9.3 request priority . 66
7.9.4 owner priority . 66
7.9.5 default list priority 66

7.10 Database related . 67
7.10.1 update db field types 67
7.10.2 db type . 67
7.10.3 db name . 67
7.10.4 db host . 67
7.10.5 db port . 68
7.10.6 db user . 68
7.10.7 db passwd . 68
7.10.8 db timeout . 68
7.10.9 db options . 68
7.10.10 db env . 68
7.10.11 db additional subscriber fields 68
7.10.12 db additional user fields 69
7.10.13 purge user table task 69

7.11 Loop prevention . 69
7.11.1 loop command max . 69
7.11.2 loop command sampling delay 70
7.11.3 loop command decrease factor 70
7.11.4 loop prevention regex 70

7.12 S/MIME configuration . 70
7.12.1 openssl . 70
7.12.2 capath . 70
7.12.3 cafile . 71
7.12.4 key passwd . 71
7.12.5 chk cert expiration task 71
7.12.6 crl update task . 71

7.13 Antivirus plug-in . 71
7.13.1 antivirus path . 72
7.13.2 antivirus args . 72
7.13.3 antivirus notify . 72

8 Sympa and its database 73
8.1 Prerequisites . 73
8.2 Installing PERL modules . 74
8.3 Creating a sympa DataBase . 74

8.3.1 Database structure . 74
8.3.2 Database creation . 74

8.4 Setting database privileges . 83
8.5 Importing subscribers data . 83

8.5.1 Importing data from a text file 83

TABLE DES MATIÈRES 7

8.5.2 Importing data from subscribers files 83
8.6 Management of the include cache 84
8.7 Extending database table format . 84
8.8 Sympa configuration . 84

9 WWSympa, Sympa’s web interface 87
9.1 Organization . 87
9.2 Web server setup . 88

9.2.1 wwsympa.fcgi access permissions 88
9.2.2 Installing wwsympa.fcgi in your Apache server 89
9.2.3 Using FastCGI . 89

9.3 wwsympa.conf parameters . 90
9.3.1 arc path . 90
9.3.2 archive default index thrd — mail 90
9.3.3 archived pidfile . 90
9.3.4 bounce path . 90
9.3.5 bounced pidfile . 90
9.3.6 cookie expire . 91
9.3.7 cookie domain . 91
9.3.8 default home . 91
9.3.9 icons url . 91
9.3.10 log facility . 91
9.3.11 mhonarc . 92
9.3.12 htmlarea url . 92
9.3.13 password case sensitive — insensitive 92
9.3.14 title . 92
9.3.15 use fast cgi 0 — 1 . 92

9.4 MhOnArc . 93
9.5 Archiving daemon . 93
9.6 Database configuration . 94
9.7 Logging in as listmaster . 94

10 Sympa RSS channel 95
10.1 latest lists . 95
10.2 active lists . 96
10.3 latest arc . 96
10.4 latest d read . 97

11 Sympa SOAP server 99
11.1 Introduction . 99
11.2 Web server setup . 99
11.3 Sympa setup . 100
11.4 The WSDL service description . 100
11.5 Client-side programming . 108

11.5.1 Writting a Java client with Axis 109

12 Authentication 111
12.1 S/MIME and HTTPS authentication 112
12.2 Authentication with email address, uid or alternate email address . . . 112
12.3 Generic SSO authentication . 113

8 TABLE DES MATIÈRES

12.4 CAS-based authentication . 114
12.5 auth.conf . 114

12.5.1 user table paragraph . 116
12.5.2 ldap paragraph . 116
12.5.3 generic sso paragraph . 119
12.5.4 cas paragraph . 120

12.6 Sharing WWSympa authentication with other applications 122
12.7 Provide a Sympa login form in another application 122

13 Authorization scenarios 125
13.1 rules specifications . 126
13.2 LDAP Named Filters . 129

13.2.1 Definition . 129
13.2.2 Search Condition . 130

13.3 scenario inclusion . 130
13.4 Hidding scenario files . 131

14 virtual host 132
14.1 How to create a virtual host . 132
14.2 robot.conf . 133

14.2.1 Robot customization . 134
14.3 Managing multiple virtual hosts . 135

15 Interaction between Sympa and other applications 137
15.1 Soap . 137
15.2 RSS channel . 137
15.3 Sharing WWSympa authentication with other applications 137
15.4 Sharing data with other applications 137
15.5 Subscriber count . 138

16 Customizing Sympa/WWSympa 139
16.1 Template file format . 139
16.2 Site template files . 140

16.2.1 helpfile.tt2 . 140
16.2.2 lists.tt2 . 140
16.2.3 global remind.tt2 . 141
16.2.4 your infected msg.tt2 . 141

16.3 Web template files . 142
16.4 Internationalization . 142

16.4.1 Sympa internationalization 142
16.4.2 List internationalization . 142
16.4.3 User internationalization . 143

16.5 Topics . 143
16.6 Authorization scenarios . 143
16.7 Loop detection . 144
16.8 Tasks . 144

16.8.1 List task creation . 145
16.8.2 Global task creation . 145
16.8.3 Model file format . 145
16.8.4 Model file examples . 147

TABLE DES MATIÈRES 9

17 Mailing list definition 149
17.1 Mail aliases . 149
17.2 List configuration file . 149
17.3 Examples of configuration files . 150
17.4 Subscribers file . 151
17.5 Info file . 152
17.6 Homepage file . 152
17.7 Data inclusion file . 152
17.8 List template files . 153

17.8.1 welcome.tt2 . 154
17.8.2 bye.tt2 . 154
17.8.3 removed.tt2 . 155
17.8.4 reject.tt2 . 155
17.8.5 invite.tt2 . 155
17.8.6 remind.tt2 . 155
17.8.7 summary.tt2 . 155
17.8.8 list aliases.tt2 . 155

17.9 Stats file . 156
17.10List model files . 156

17.10.1 remind.annual.task . 156
17.10.2 expire.annual.task . 156

17.11Message header and footer . 156
17.11.1 Archive directory . 157

18 List creation, edition and removal 159
18.1 List creation . 159

18.1.1 Data for list creation . 160
18.1.2 XML file format . 160

18.2 List families . 162
18.3 List creation on command line with sympa.pl 163
18.4 Creating and editing mailing using the web 163

18.4.1 List creation on the Web interface 163
18.4.2 Who can create lists on the Web interface 164
18.4.3 typical list profile and Web interface 164
18.4.4 List edition . 164

18.5 Removing a list . 166

19 Lists Families 167
19.1 Family concept . 167
19.2 Using family . 168

19.2.1 Definition . 168
19.2.2 Instantiation . 171
19.2.3 Modification . 173
19.2.4 Closure . 173
19.2.5 Adding one list . 173
19.2.6 Removing one list . 174
19.2.7 Modifying one list . 174
19.2.8 List parameters edition in a family context 174

20 List configuration parameters 175

10 TABLE DES MATIÈRES

20.1 List description . 175
20.1.1 editor . 175
20.1.2 editor include . 176
20.1.3 host . 176
20.1.4 lang . 176
20.1.5 owner . 177
20.1.6 owner include . 178
20.1.7 subject . 178
20.1.8 topics . 179
20.1.9 visibility . 179

20.2 Data source related . 179
20.2.1 user data source . 179
20.2.2 ttl . 180
20.2.3 include list . 180
20.2.4 include remote sympa list 181
20.2.5 include sql query . 181
20.2.6 include ldap query . 183
20.2.7 include ldap 2level query 184
20.2.8 include file . 186
20.2.9 include remote file . 186

20.3 Command related . 187
20.3.1 subscribe . 187
20.3.2 unsubscribe . 188
20.3.3 add . 188
20.3.4 del . 189
20.3.5 remind . 189
20.3.6 remind task . 189
20.3.7 expire task . 190
20.3.8 send . 190
20.3.9 review . 191
20.3.10 shared doc . 192

20.4 List tuning . 193
20.4.1 reply to header . 193
20.4.2 max size . 194
20.4.3 anonymous sender . 194
20.4.4 custom header . 194
20.4.5 rfc2369 header fields . 194
20.4.6 loop prevention regex . 195
20.4.7 custom subject . 195
20.4.8 footer type . 195
20.4.9 digest . 196
20.4.10 digest max size . 196
20.4.11 available user options . 196
20.4.12 default user options . 197
20.4.13 msg topic . 197
20.4.14 msg topic keywords apply on 197
20.4.15 msg topic tagging . 198
20.4.16 cookie . 198
20.4.17 priority . 198

20.5 Bounce related . 199

TABLE DES MATIÈRES 11

20.5.1 bounce . 199
20.5.2 bouncers level1 . 199
20.5.3 bouncers level2 . 200
20.5.4 welcome return path . 200
20.5.5 remind return path . 201

20.6 Archive related . 201
20.6.1 archive . 201
20.6.2 web archive . 202
20.6.3 archive crypted msg . 203

20.7 Spam protection . 203
20.7.1 spam protection . 203
20.7.2 web archive spam protection 203

20.8 Intern parameters . 204
20.8.1 family name . 204
20.8.2 latest instantiation . 204

21 Reception mode 205
21.1 Message topics . 205

21.1.1 Message topic definition in a list 205
21.1.2 Subscribing to message topic for list subscribers 205
21.1.3 Message tagging . 206

22 Shared documents 207
22.1 The three kind of operations on a document 208
22.2 The description file . 208

22.2.1 Structure of description files 209
22.3 The predefined authorization scenarios 209

22.3.1 The public scenario . 209
22.3.2 The private scenario . 209
22.3.3 The scenario owner . 210
22.3.4 The scenario editor . 210

22.4 Access control . 210
22.4.1 Listmaster and privileged owners 210
22.4.2 Special case of the shared directory 210
22.4.3 General case . 211

22.5 Shared document actions . 212
22.6 Template files . 213

22.6.1 d read.tt2 . 213
22.6.2 d editfile.tt2 . 213
22.6.3 d control.tt2 . 213
22.6.4 d upload.tt2 . 213
22.6.5 d properties.tt2 . 214

23 Bounce management 215
23.1 VERP . 216

24 Antivirus 217

25 Using Sympa with LDAP 219

12 TABLE DES MATIÈRES

26 Sympa with S/MIME and HTTPS 221
26.1 Signed message distribution . 221
26.2 Use of S/MIME signature by Sympa itself 222
26.3 Use of S/MIME encryption . 222
26.4 S/Sympa configuration . 222

26.4.1 Installation . 222
26.4.2 configuration in sympa.conf 223
26.4.3 configuration to recognize S/MIME signatures 223
26.4.4 distributing encrypted messages 224

26.5 Managing certificates with tasks . 225
26.5.1 chk cert expiration.daily.task model 225
26.5.2 crl update.daily.task model 225

27 Using Sympa commands 227
27.1 User commands . 227
27.2 Owner commands . 230
27.3 Moderator commands . 230

28 Internals 233
28.1 mail.pm . 233

28.1.1 public functions . 233
28.1.2 private functions . 235

28.2 List.pm . 237
28.2.1 Functions for message distribution 237
28.2.2 Functions for template sending 239
28.2.3 Functions for service messages 240
28.2.4 Functions for message notification 242
28.2.5 Functions for topic messages 244
28.2.6 Scenario evaluation . 247
28.2.7 Structure and access to list configuration parameters 248

28.3 sympa.pl . 249
28.4 Commands.pm . 252

28.4.1 Commands processing . 252
28.4.2 tools for command processing 259

28.5 wwsympa.fcgi . 259
28.6 report.pm . 262

28.6.1 Message diffusion . 263
28.6.2 Mail commands . 264
28.6.3 Web commands . 266

28.7 tools.pl . 269
28.8 Message.pm . 271

Chapitre 1

Presentation

Sympa is an electronic mailing list manager. It is used to automate list management
functions such as subscription, moderation, archive and shared document manage-
ment. It also includes management functions which would normally require a substan-
tial amount of work (time-consuming and costly for the list owner). These functions
include automatic management of subscription renewals, list maintenance, and many
others.

Sympa manages many different kinds of lists. It includes a web interface for all list
functions including management. It allows a precise definition of each list feature, such
as sender authorization, the moderating process, etc. Sympa defines, for each feature of
each list, exactly who is authorized to perform the relevant operations, along with the
authentication method to be used. Currently, authentication can be based on either an
SMTP From header, a password, or an S/MIME signature.
Sympa is also able to extract electronic addresses from an LDAP directory or SQL
server, and include them dynamically in a list.

Sympa manages the dispatching of messages, and makes it possible to reduce the load
on the computer system where it is installed. In configurations with sufficient memory,
Sympa is especially well adapted to handling large lists : for a list of 20,000 subscribers,
it requires less than 6 minutes to send a message to 95 percent of the subscribers,
assuming that the network is available (tested on a 300 MHz, 256 MB i386 server with
Linux).

This guide covers the installation, configuration and management of the current release
(5.2.2) of sympa.

13

http://www.sympa.org

14 CHAPITRE 1. PRESENTATION

1.1 License

Sympa is free software ; you may distribute it under the terms of the GNU General
Public License Version 21

You may make and give away verbatim copies of the source form of this package
without restriction, provided that you duplicate all of the original copyright notices and
associated disclaimers.

1.2 Features

Sympa provides all the basic features that any mailing list management robot should
include. While most Sympa features have their equivalents in other mailing list appli-
cations, Sympa is unique in including features in a single software package, including :

– High speed distribution processing and load control. Sympa can be tuned to al-
low the system administrator to control the amount of computer resources used. Its
optimized algorithm allows :
– the use of your preferred SMTP engine, e.g. sendmail, qmail or postfix
– tuning of the maximum number of SMTP child processes
– grouping of messages according to recipients’ domains, and tuning of the grou-

ping factor
– detailed logging

– Multilingual user interface. The full user/admin interface (mail and web) is interna-
tionalized. Translations are gathered in a standard PO file.

– Template based user interface. Every web page and service message can be custo-
mized via TT2 template format.

– MIME support. Sympa naturally respects MIME in the distribution process, and
in addition allows list owners to configure their lists with welcome, goodbye and
other predefined messages using complex MIME structures. For example, a welcome
message can be in multipart/alternative format, using text/html, audio/x-wav :-),
or whatever (Note that Sympa commands in multipart messages are successfully
processed, provided that one part is text/plain).

– The sending process is controlled on a per-list basis. The list definition al-
lows a number of different actions for each incoming message. A private list
is a list where only subscribers can send messages. A list configured using
privateoreditorkey mode accepts incoming messages from subscribers, but will
forward any other (i.e. non-subscriber) message to the editor with a one-time secret
numeric key that will be used by the editor to reject or distribute it. For details about
the different sending modes, refer to the send parameter (20.3.8, page 190). The
sending process configuration (as well as most other list operations) is defined using
an authorization scenario. Any listmaster can define new authorization scenarios
in order to complement the 20 predefined configurations included in the distribution.

1http ://www.gnu.org/copyleft/gpl.html

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

1.2. FEATURES 15

Example : forward multipart messages to the list editor, while distributing others
without requiring any further authorization.

– Privileged operations can be performed by list editors or list owners (or any other
user category), as defined in the list config file or by the robot administrator, the
listmaster, defined in the /usr/local/sympa-stable/etc/sympa.conf global
configuration file (listmaster can also be defined for a particular virtual host). Pri-
vileged operations include the usual ADD, DELETE or REVIEW commands, which can
be authenticated via a one-time password or an S/MIME signature.

– Web interface : WWSympa is a global Web interface to all Sympa functions (inclu-
ding administration). It provides :
– classification of lists, along with a search index
– access control to all functions, including the list of lists (which makes WWSympa

particularly well suited to be the main groupware tool within an intranet)
– management of shared documents (download, upload, specific access control for

each document)
– an HTML document presenting each user with the list of her current subscriptions,

including access to archives, and subscription options
– management tools for list managers (bounce processing, changing of list parame-

ters, moderating incoming messages)
– tools for the robot administrator (list creation, global robot configuration)
(See 9.1, page 87)

– RDBMS : the internal subscriber and administrative data structure can be stored in a
database or, for compatibility with versions 1.x, in text files for subscriber data. The
introduction of databases came out of the WWSympa project. The database ensures
a secure access to shared data. The PERL database API DBI/DBD enables interope-
rability with various RDBMS (MySQL, SQLite, PostgreSQL, Oracle, Sybase). (See
ref sec-rdbms, page 73)

– Virtual hosting : a single Sympa installation can provide multiple virtual robots with
both email and web interface customization (See 14, page 132).

– LDAP-based mailing lists : e-mail addresses can be retrieved dynamically from a
database accepting SQL queries, or from an LDAP directory. In the interest of reaso-
nable response times, Sympa retains the data source in an internal cache controlled
by a TTL (Time To Live) parameter. (See 20.2.6, page 183)

– LDAP authentication : via uid and emails stored in LDAP Directories. Alternative
email addresses, extracted from LDAP directory, may be used to ”unify” subscrip-
tions. (See ref ldap-auth, page 112)

– Antivirus scanner : Sympa extracts attachements from incoming messages and run
a virus scanner on them. Curently working with McAfee/uvscan, Fsecure/fsav, So-
phos, AVP, Trend Micro/VirusWall and Clam Antivirus. (See ref antivirus, page 217)

– Inclusion of the subscribers of one list among the subscribers of another. This is real
inclusion, not the dirty, multi-level cascading one might otherwise obtain by simply
”subscribing list B to list A”.

– channel RSS.

16 CHAPITRE 1. PRESENTATION

1.3 Project directions

Sympa is a very active project : check the release note release note2. So it is no longer
possible to maintain multiple document about Sympa project direction. Please refer to
in-the-futur document3 for information about project direction.

1.4 History

Sympa development started from scratch in 1995. The goal was to ensure continuity
with the TULP list manager, produced partly by the initial author of Sympa : Christophe
Wolfhugel.

New features were required, which the TULP code was just not up to handling. The ini-
tial version of Sympa brought authentication, the flexible management of commands,
high performances in internal data access, and object oriented code for easy code main-
tenance.

It took nearly two years to produce the first market releases.

Other date :

– Mar 1999 Internal use of a database (Mysql), definition of list subscriber with exter-
nal datasource (RDBMS or LDAP).

– Oct 1999 Stable version of WWsympa, introduction of authorization scenarios.
– Feb 2000 Web bounces management
– Apr 2000 Archives search engine and message removal
– May 2000 List creation feature from the web
– Jan 2001 Support for S/MIME (signing and encryption), list setup through the web

interface, Shared document repository for each list. Full rewrite of HTML look and
feel

– Jun 2001 Auto-install of aliases at list creation time, antivirus scanner plugging
– Jan 2002 Virtual hosting, LDAP authentication
– Aug 2003 Automatic bounces management
– Sep 2003 CAS-base and Shibboleth-based authentication
– Dec 2003 Sympa SOAP server
– Aug 2004 Changed for TT2 template format and PO catalogue format
– 2005 Changed HTML to XHTML + CSS, RSS, List families, ...

2http ://www.sympa.org/release.html
3http ://www.sympa.org/sympa/in-the-future.html

http://www.sympa.org/release.html
http://www.sympa.org/sympa/in-the-future.html

1.5. AUTHORS AND CREDITS 17

1.5 Authors and credits

Christophe Wolfhugel is the author of the first beta version of Sympa. He developed it
while working for the Institut Pasteur4.

Later developments have mainly been driven by the Comité Réseaux des Universités5

(Olivier Salaün and Serge Aumont), who look after a large mailing list service.

Our thanks to all contributors, including :

– John-Paul Robinson, University of Alabama at Birmingham, who added to email
verification procedure to the Shibboleth support.

– Gwenaelle Bouteille who joined the development team for a few months and produ-
ced a great job for various feature introduced in V5 (familly, RSS, shared document
moderation, ...).

– Pierre David, who in addition to his help and suggestions in developing the code,
participated more than actively in producing this manual.

– David Lewis who corrected this documentation
– Philippe Rivière for his persevering in tuning Sympa for Postfix.
– Raphaël Hertzog (debian), Jerome Marant (debian) and Stéphane Poirey (redhat) for

Linux packages.
– Loic Dachary for guiding us through the GNU Coding Standards
– Vincent Mathieu, Lynda Amadouche, John Dalbec for their integration of LDAP

features in Sympa.
– Olivier Lacroix, for all his perseverance in bug fixing.
– Hubert Ulliac for search in archive base on marcsearch.pm
– Florent Guilleux who wrote the Task Manager
– Nadia Euzen for developping the antivirus scanner pluggin.
– Fabien Marquois, who introduced many new features such as the digest.
– Valics Lehel, for his Romanian translations
– Vizi Szilard for his Hungarian translations
– Petr Prazak for his Czech translations
– Rodrigo Filgueira Prates for his Portuguese translations
– Lukasz Zalubski for his Polish translations
– Alex Nappa and Josep Roman for their Spanish translations
– Carsten Clasohm and Jens-Uwe Gaspar for their German translations
– Marco Ferrante for his Italian translations
– Tung Siu Fai, Wang Jian and Autrijus Tang for their Chinese translations
– and also : Manuel Valente, Dominique Rousseau, Laurent Ghys, Francois Petillon,

Guy Brand, Jean Brange, Fabrice Gaillard, Hervé Maza, Harald Wilhelmi,
– Anonymous critics who never missed a chance to remind us that smartlist already

did all that better.
– All contributors and beta-testers cited in the RELEASE NOTES file, who, by serving

as guinea pigs and being the first to use it, made it possible to quickly and efficiently
debug the Sympa software.

– Ollivier Robert, Usenet Canal Historique and the good manners guru in the PERL

4http ://www.pasteur.fr
5http ://www.cru.fr

http://www.pasteur.fr
http://www.cru.fr

18 CHAPITRE 1. PRESENTATION

program.
– Bernard Barbier, without whom Sympa would not have a name.

We ask all those we have forgotten to thank to accept our apologies and to let us know,
so that we can correct this error in future releases of this documentation.

1.6 Mailing lists and support

If you wish to contact the authors of Sympa, please use the address
sympa-authors@cru.fr.

There are also a few mailing-lists about Sympa 6 :

– sympa-users@cru.fr general info list
– sympa-fr@cru.fr, for French-speaking users
– sympa-announce@cru.fr, Sympa announcements
– sympa-dev@cru.fr, Sympa developers
– sympa-translation@cru.fr, Sympa translators

To join, send the following message to sympa@cru.fr :

subscribe Listname Firstname Name

(replace Listname, Firstname and Name by the list name, your first name and your
family name).

You may also consult the Sympa home page, you will find the latest version, FAQ and
so on.

6http ://listes.cru.fr/sympa/lists/informatique/sympa

http://listes.cru.fr/sympa/lists/informatique/sympa
http://www.sympa.org
http://www.sympa.org/distribution/

Chapitre 2

what does Sympa consist of ?

2.1 Organization

Here is a snapshot of what Sympa looks like once it has settled down on your system.
This also illustrates the Sympa philosophy, I guess. Almost all configuration files can
be defined for a particular list, for a virtual host or for the whole site.

– /usr/local/sympa-stable
The root directory of Sympa. You will find almost everything related to Sympa under
this directory, except logs and main configuration files.

– /usr/local/sympa-stable/bin
This directory contains the binaries, including the CGI. It also contains the de-
fault authorization scenarios, templates and configuration files as in the distribution.
/usr/local/sympa-stable/bin may be completely overwritten by the make
install so you must not customize templates and authorization scenarios under
/usr/local/sympa-stable/bin.

– /usr/local/sympa-stable/bin/etc
Here Sympa stores the default versions of what it will otherwise find in
/usr/local/sympa-stable/etc (task models, authorization scenarios, templates
and configuration files, recognized S/Mime certificates, families).

– /usr/local/sympa-stable/etc
This is your site’s configuration directory. Consult
/usr/local/sympa-stable/bin/etc when drawing up your own.

– /usr/local/sympa-stable/etc/create list templates/
List templates (suggested at list creation time).

– /usr/local/sympa-stable/etc/scenari/
This directory will contain your authorization scenarios. If you don’t
know what the hell an authorization scenario is, refer to 13,page 125.
Those authorization scenarios are default scenarios but you may
look at /usr/local/sympa-stable/etc/my.domain.org/scenari/

19

20 CHAPITRE 2. WHAT DOES SYMPA CONSIST OF ?

for default scenarios of my.domain.orgvirtual host and
/usr/local/sympa-stable/expl/mylist/scenari for scenarios specific
to a particular list

– /usr/local/sympa-stable/etc/data sources/
This directory will contain your .incl files (see 17.7, page 152). For the moment it
only deals with files requiered by paragraphs owner include and editor include
in the config file.

– /usr/local/sympa-stable/etc/list task models/
This directory will store your own list task models (see 16.8, page 144).

– /usr/local/sympa-stable/etc/global task models/
Contains global task models of yours (see 16.8, page 144).

– /usr/local/sympa-stable/etc/web tt2/ (used to be
/usr/local/sympa-stable/etc/wws templates/)
The web interface (WWSympa) is composed of template HTML files par-
sed by the CGI program. Templates can also be defined for a particu-
lar list in /usr/local/sympa-stable/expl/mylist/web tt2/ or in
/usr/local/sympa-stable/etc/my.domain.org/web tt2/

– /usr/local/sympa-stable/etc/mail tt2/ (used to be
/usr/local/sympa-stable/etc/templates/)
Some of the mail robot’s replies are defined by templates (welcome.tt2 for SUB-
SCRIBE). You can overload these template files in the individual list directories or
for each virtual host, but these are the defaults.

– /usr/local/sympa-stable/etc/families/
Contains family directories of yours (see 18, page 159). Families directories can also
be created in /usr/local/sympa-stable/etc/my.domain.org/families/

– /usr/local/sympa-stable/etc/my.domain.org
The directory to define the virtual host my.domain.orgdedicated to manag-
ment of all lists of this domain (list description of my.domain.orgare stored in
/usr/local/sympa-stable/expl/my.domain.org). Those directories for vir-
tual hosts have the same structure as /usr/local/sympa-stable/etc which is
the configuration dir of the default robot.

– /usr/local/sympa-stable/expl
Sympa’s working directory.

– /usr/local/sympa-stable/expl/mylist
The list directory (refer to 17, page 149). Lists stored in this directory belong
to the default robot as defined in sympa.conf file, but a list can be stored in
/usr/local/sympa-stable/expl/my.domain.org/mylist directory and it is
managed by my.domain.orgvirtual host.

– /usr/local/sympa-stable/expl/X509-user-certs
The directory where Sympa stores all user’s certificates

– /usr/local/sympa-stable/locale
Internationalization directory. It contains message catalogues in the GNU .po format.

– /usr/local/sympa-stable/spool
Sympa uses 9 different spools (see 2.4, page 22).

– /usr/local/sympa-stable/src/
Sympa sources.

2.2. BINARIES 21

2.2 Binaries

– sympa.pl
The main daemon ; it processes commands and delivers messages. Continuously
scans the msg/ spool.

– sympa wizard.pl
A wizard to edit sympa.conf and wwsympa.conf. Maybe it is a good idea to run it
at the beginning, but these file can also be edited with your favorite text editor.

– wwsympa.fcgi
The CGI program offering a complete web interface to mailing lists. It can work
in both classical CGI and FastCGI modes, although we recommend FastCGI mode,
being up to 10 times faster.

– bounced.pl
This daemon processes bounces (non-delivered messages), looking for bad ad-
dresses. List owners will later access bounce information via WWSympa. Conti-
nuously scans the bounce/ spool.

– archived.pl
This daemon feeds the web archives, converting messages to HTML format and lin-
king them. It uses the amazing MhOnArc. Continuously scans the outgoing/ spool.

– task manager.pl
The daemon which manages the tasks : creation, checking, execution. It regularly
scans the task/ spool.

– sympa soap server.fcgi
The server will process SOAP (web services) request. This server requires FastCGI ;
it should be referenced from within your HTTPS config.

– queue
This small program gets the incoming messages from the aliases and stores them in
msg/ spool.

– bouncequeue
Same as queue for bounces. Stores bounces in bounce/ spool.

2.3 Configuration files

– /usr/local/sympa-stable/etc/sympa.conf
The main configuration file. See 7, page 47.

– /usr/local/sympa-stable/etc/wwsympa.conf
WWSympa configuration file. See 1.2, page 15.

– edit list.conf
Defines which parameters/files are editable by owners. See 18.4.4, page 164.

– topics.conf
Contains the declarations of your site’s topics (classification in WWSympa), along
with their titles. A sample is provided in the sample/ directory of the sympa distri-
bution. See 16.5, page 143.

– auth.conf
Defines authentication backend organisation (LDAP-based authentication, CAS-
based authentication and sympa internal)

22 CHAPITRE 2. WHAT DOES SYMPA CONSIST OF ?

– robot.conf
It is a subset of sympa.conf defining a Virtual host (one per Virtual host).

– nrcpt by domain
This file is used to limit the number of recipients per SMTP session. Some ISPs

trying to block spams rejects sessions with too many recipients. In such case you
can set the 7.4.7 robot.conf parameter to a lower value but this will affect all smtp
session with any remote MTA. This file is used to limit the number of receipient
for some particular domains. the file must contain a list of domain followed by the
maximum number of recipient per SMTP session. Example :

– data structure.version
This file is automatically created and maintained by Sympa itself. It contains the
current version of your Sympa service and is used to detect upgrades and trigger
maintenance procedures such as database structure changes.

yohaa.com 3
oal.com 5

2.4 Spools

See 7.6, page 57 for spool definition in sympa.conf.

– /usr/local/sympa-stable/spool/auth/
For storing messages until they have been confirmed.

– /usr/local/sympa-stable/spool/bounce/
For storing incoming bouncing messages.

– /usr/local/sympa-stable/spool/digest/
For storing lists’ digests before they are sent.

– /usr/local/sympa-stable/spool/mod/
For storing unmoderated messages.

– /usr/local/sympa-stable/spool/msg/
For storing incoming messages (including commands).

– /usr/local/sympa-stable/spool/msg/bad/
Sympa stores rejected messages in this directory

– /usr/local/sympa-stable/spool/distribute/
For storing message ready for distribution. This spool is used only if the installation
run 2 sympa.pl daemon, one for commands, one for messages.

– /usr/local/sympa-stable/spool/distribute/bad/
Sympa stores rejected messages in this directory

– /usr/local/sympa-stable/spool/task/
For storing all created tasks.

– /usr/local/sympa-stable/spool/outgoing/
sympa.pl dumps messages in this spool to await archiving by archived.pl.

– /usr/local/sympa-stable/spool/topic/
For storing topic information files.

2.5. ROLES AND PRIVILEGES 23

2.5 Roles and privileges

You can assign roles to users (via their email addresses) at different level in Sympa ;
privileges are associated (or can be associated) to these roles. We list these roles below
(from the most powerful to the less), along with the relevent privileges.

2.5.1 (Super) listmasters

These are the persons administrating the service, defined in the sympa.conf file. They
inherit the listmaster role in virtual hosts and are the default set of listmasters for virtual
hosts.

2.5.2 (Robot) listmasters

You can define a different set of listmasters at a virtual host level (in the robot.conf
file). They are responsible for moderating mailing lists creation (if list creation is confi-
gured this way), editing default templates, providing help to list owners and modera-
tors. Users defined as listmasters get a privileged access to Sympa web interface. List-
masters also inherit the privileges of list owners (for any list defined in the virtual host),
but not the moderator privileges.

2.5.3 Privileged list owners

The first defined privileged owner is the person who requested the list creation. Later
it can be changed or extended. They inherit (basic) owners privileges and are also
responsible for managing the list owners and editors themselves (via the web interface).
With Sympa’d default behavior, privileged owners can edit more list parameters than
(basic) owners can do ; but this can be customized via the edit-list.conf file.

2.5.4 (Basic) list owners

They are responsible for managing the members of the list, editing the list configuration
and templates. Owners (and privileged owners) are defined in the list config file.

24 CHAPITRE 2. WHAT DOES SYMPA CONSIST OF ?

2.5.5 Moderators (also called Editors)

Moderators are responsible for the messages distributed in the mailing list (as opposed
to owners who look after list members). Moderators are active if the list has been setup
as a moderated mailing list. If no moderator is defined for the list, then list owners will
inherit the moderator role.

2.5.6 Subscribers (or list members)

Subscribers are the persons who are member of a mailing list ; they either subscribed,
or got added directly by the listmaster or via a datasource (LDAP, SQL, another list,...).
These subscribers receive messages posted in the list (unless they have set the nomail
option) and have special privileges to post in the mailing list (unless it is a newsletter).
Most privileges a subscriber may have is not hardcoded in Sympa but expressed via the
so-called authorization scenarios (see 13, page 125).

Chapitre 3

Installing Sympa

Sympa is a program written in PERL. It also calls a short program written in C for tasks
which it would be unreasonable to perform via an interpreted language.

3.1 Obtaining Sympa, related links

The Sympa distribution is available from http ://www.sympa.org. All important
resources are referenced there :

– sources
– RELEASE NOTES
– .rpm and .deb packages for Linux
– user mailing list (see 1.6, page 18)
– contributions
– ...

3.2 Prerequisites

Sympa installation and configuration are relatively easy tasks for experienced UNIX
users who have already installed PERL packages.

Note that most of the installation time will involve putting in place the prerequisites,
if they are not already on the system. No more than a handful of ancillary tools are
needed, and on recent UNIX systems their installation is normally very straightforward.
We strongly advise you to perform installation steps and checks in the order listed
below ; these steps will be explained in detail in later sections.

25

http://www.sympa.org

26 CHAPITRE 3. INSTALLING SYMPA

– identification of host system characteristics
– installation of DB Berkeley module (already installed on most UNIX systems)
– installing a RDBMS (Oracle, MySQL, SQLite, Sybase or PostgreSQL) and creating

Sympa’s Database. This is required for using the web interface for Sympa. Please
refers to Sympa and its database section (8, page 73).

– installation of CPAN CPAN (Comprehensive PERL Archive Network)1 modules
– creation of a UNIX user

3.2.1 System requirements

You should have a UNIX system that is more or less recent in order to be able to use
Sympa. In particular, it is necessary that your system have an ANSI C compiler (in
other words, your compiler should support prototypes) ;

Sympa has been installed and tested on the following systems, therefore you should not
have any special problems :

– Linux (various distributions)
– FreeBSD 2.2.x and 3.x
– NetBSD
– Digital UNIX 4.x
– Solaris 2.5 and 2.6
– AIX 4.x
– HP-UX 10.20

Anyone willing to port it to NT ? ;-)

Finally, most UNIX systems are now supplied with an ANSI C compiler ; if this is not
the case, you can install the gcc compiler, which you will find on the nearest GNU site,
for example in France2.

To complete the installation, you should make sure that you have a sufficiently recent
release of the sendmail MTA, i.e. release 8.9.x3 or a more recent release. You may
also use postfix or qmail.

3.2.2 Install Berkeley DB (NEWDB)

UNIX systems often include a particularly unsophisticated mechanism to manage in-
dexed files. This consists of extensions known as dbm and ndbm, which are unable to
meet the needs of many more recent programs, including Sympa, which uses the DB
package initially developed at the University of California in Berkeley, and which is

1http ://www.perl.com/CPAN
2ftp ://ftp.oleane.net/pub/mirrors/gnu/
3ftp ://ftp.oleane.net/pub/mirrors/sendmail-ucb/

http://www.perl.com/CPAN
ftp://ftp.oleane.net/pub/mirrors/gnu/
ftp://ftp.oleane.net/pub/mirrors/sendmail-ucb/

3.2. PREREQUISITES 27

now maintained by the company Sleepycat software4. Many UNIX systems like Li-
nux, FreeBSD or Digital UNIX 4.x have the DB package in the standard version. If not
you should install this tool if you have not already done so.

You can retrieve DB on the Sleepycat site5, where you will also find clear installation
instructions.

3.2.3 Install PERL and CPAN modules

To be able to use Sympa you must have release 5.004 03 or later of the PERL language,
as well as several CPAN modules.

At make time, the check perl modules.pl script is run to check for installed ver-
sions of required PERL and CPAN modules. If a CPAN module is missing or out of
date, this script will install it for you.

You can also download and install CPAN modules yourself. You will find a current
release of the PERL interpreter in the nearest CPAN archive. If you do not know where
to find a nearby site, use the CPAN multiplexor6 ; it will find one for you.

3.2.4 Required CPAN modules

The following CPAN modules required by Sympa are not included in the standard
PERL distribution. At make time, Sympa will prompt you for missing Perl modules
and will attempt to install the missing ones automatically ; this operation requires root
privileges.

Because Sympa features evolve from one relaease to another, the following list of mo-
dules might not be up to date :

– DB File (v. 1.50 or later)
– Digest-MD5
– MailTools (version 1.13 o later)
– IO-stringy
– MIME-tools (may require IO/Stringy)
– MIME-Base64
– CGI
– File-Spec
– libintl-perl
– Template-Toolkit

4http ://www.sleepycat.com
5http ://www.sleepycat.com/
6http ://www.perl.com/CPAN/src/latest.tar.gz

http://www.sleepycat.com
http://www.sleepycat.com/
http://www.perl.com/CPAN/src/latest.tar.gz

28 CHAPITRE 3. INSTALLING SYMPA

Since release 2, Sympa requires an RDBMS to work properly. It stores users’ subscrip-
tions and preferences in a database. Sympa is also able to extract user data from within
an external database. These features require that you install database-related PERL li-
braries. This includes the generic Database interface (DBI) and a Database Driver for
your RDBMS (DBD) :

– DBI (DataBase Interface)
– DBD (DataBase Driver) related to your RDBMS (e.g. Msql-Mysql-modules for

MySQL)

If you plan to interface Sympa with an LDAP directory to build dynamical mailing lists,
you need to install PERL LDAP libraries :

– Net : :LDAP (perlldap).

Passwords in Sympa database can be crypted ; therefore you need to install the follo-
wing reversible cryptography library :

– CipherSaber

For performence concerns, we recommend using WWSympa as a persistent CGI, using
FastCGI. Therefore you need to install the following Perl module :

– FCGI

If you want to Download Zip files of list’s Archives, you’ll need to install perl Module
for Archive Management :

– Archive : :Zip

3.2.5 Create a UNIX user

The final step prior to installing Sympa : create a UNIX user (and if possible a group)
specific to the program. Most of the installation will be carried out with this account.
We suggest that you use the name sympa for both user and group.

Numerous files will be located in the Sympa user’s login directory. Throughout
the remainder of this documentation we shall refer to this login directory as
/usr/local/sympa-stable.

3.3. COMPILATION AND INSTALLATION 29

3.3 Compilation and installation

Before using Sympa, you must customize the sources in order to specify a small number
of parameters specific to your installation.

First, extract the sources from the archive file, for example in the ~sympa/src/ direc-
tory : the archive will create a directory named sympa-5.2.2/ where all the useful files
and directories will be located. In particular, you will have a doc/ directory containing
this documentation in various formats ; a sample/ directory containing a few examples
of configuration files ; a locale/ directory where multi-lingual messages are stored ;
and, of course, the src/ directory for the mail robot and wwsympa for the web interface.

Example :

su -
$ gzip -dc sympa-5.2.2.tar.gz | tar xf -

Now you can run the installation process :

$./configure
$ make
$ make install

configure will build the Makefile ; it recognizes the following command-line argu-
ments :

– - - prefix=PREFIX, the Sympa homedirectory (default /home/sympa/)
– - - with-bindir=DIR, user executables in DIR (default /home/sympa/bin/)
queue and bouncequeue programs will be installed in this directory. If sendmail
is configured to use smrsh (check the mailer prog definition in your sendmail.cf),
this should point to /etc/smrsh. This is probably the case if you are using Linux
RedHat.

– - - with-sbindir=DIR, system admin executables in DIR (default
/home/sympa/bin)

– - - with-libexecdir=DIR, program executables in DIR (default
/home/sympa/bin)

– - - with-cgidir=DIR, CGI programs in DIR (default /home/sympa/bin)
– - - with-iconsdir=DIR, web interface icons in DIR (default /home/httpd/icons)
– - - with-datadir=DIR, default configuration data in DIR (default

/home/sympa/bin/etc)
– - - with-confdir=DIR, Sympa main configuration files in DIR (default /etc)
sympa.conf and wwsympa.conf will be installed there.

– - - with-expldir=DIR, modifiable data in DIR (default /home/sympa/expl/)
– - - with-libdir=DIR, code libraries in DIR (default /home/sympa/bin/)
– - - with-mandir=DIR, man documentation in DIR (default /usr/local/man/)

30 CHAPITRE 3. INSTALLING SYMPA

– - - with-docdir=DIR, man files in DIR (default /home/sympa/doc/)
– - - with-initdir=DIR, install System V init script in DIR (default

/etc/rc.d/init.d)
– - - with-lockdir=DIR, create lock files in DIR (default /var/lock/subsys)
– - - with-piddir=DIR, create .pid files in DIR (default /home/sympa/)
– - - with-etcdir=DIR, Config directories populated by the user are in DIR (de-

fault /home/sympa/etc)
– - - with-localedir=DIR, create language files in DIR (default

/home/sympa/locale)
– - - with-scriptdir=DIR, create script files in DIR (default /home/sympa/script)
– - - with-sampledir=DIR, create sample files in DIR (default

/home/sympa/sample)
– - - with-spooldir=DIR, create directory in DIR (default /home/sympa/spool)
– - - with-perl=FULLPATH, set full path to Perl interpreter (default /usr/bin/perl)
– - - with-openssl=FULLPATH, set path to OpenSSL (default

/usr/local/ssl/bin/openssl)
– - - with-user=LOGI, set sympa user name (default sympa)

Sympa daemons are running under this UID.
– - - with-group=LOGIN, set sympa group name (default sympa)

Sympa daemons are running under this UID.
– - - with-sendmail aliases=ALIASFILE, set aliases file to be used by Sympa

(default /etc/mail/sympa aliases). (You can overright this value at runtime giving its
value in sympa.conf)

– - - with-virtual aliases=ALIASFILE, set postfix virtual file to be used by
Sympa (default /etc/mail/sympa virtual)

This is used by the alias manager.pl script :
– - - with-newaliases=FULLPATH, set path to sendmail newaliases command (de-

fault /usr/bin/newaliases)
– - - with-newaliases arg=ARGS, set arguments to newaliases command (default

NONE)
This is used by the postfix manager.pl script :

– - - with-postmap=FULLPATH, set path to postfix postmap command (default
/usr/sbin/postmap)

– - - with-postmap arg=ARGS, set arguments to postfix postmap command (de-
fault NONE)

– - - enable-secure, install wwsympa to be run in a secure mode, without suidperl
(default disabled)

make will build a few binaries (queue, bouncequeue and aliaswrapper) and help
you install required CPAN modules.

make install does the installation job. It it recognizes the following option :

– DESTDIR, can be set in the main Makefile to install sympa in DESTDIR/DIR (ins-
tead of DIR). This is useful for building RPM and DEB packages.

Since version 3.3 of Sympa colors are sympa.conf parameters (see 7.1.9, page 49)

3.4. ROBOT ALIASES 31

If everything goes smoothly, the ~sympa/bin/ directory will contain various PERL
programs as well as the queue binary. You will remark that this binary has the set-uid-
on-exec bit set (owner is the sympa user) : this is deliberate, and indispensable if Sympa
is to run correctly.

3.3.1 Choosing directory locations

All directories are defined in the /etc/sympa.conf file, which is read by Sympa at
runtime. If no sympa.conf file was found during installation, a sample one will be
created. For the default organization of directories, please refer to 2.1, page 19.

It would, of course, be possible to disperse files and directories to a number of different
locations. However, we recommend storing all the directories and files in the sympa
user’s login directory.

These directories must be created manually now. You can use restrictive authorizations
if you like, since only programs running with the sympa account will need to access
them.

3.4 Robot aliases

See Robot aliases , 6.1, page 43)

3.5 Logs

Sympa keeps a trace of each of its procedures in its log file. However, this requires
configuration of the syslogd daemon. By default Sympa will use the local1 facility
(syslog parameter in sympa.conf). WWSympa’s logging behaviour is defined by the
log facility parameter in wwsympa.conf (by default the same facility as Sympa).
To this end, a line must be added in the syslogd configuration file
(/etc/syslog.conf). For example :

local1.* /var/log/sympa

Then reload syslogd.

Depending on your platform, your syslog daemon may use either a UDP or a UNIX
socket. Sympa’s default is to use a UNIX socket ; you may change this behavior by
editing sympa.conf’s log socket type parameter (7.3.3, page 52). You can test log
feature by using testlogs.pl.

32 CHAPITRE 3. INSTALLING SYMPA

Chapitre 4

Running Sympa

4.1 sympa.pl

sympa.pl is the main daemon ; it processes mail commands and is in charge of mes-
sages distribution.

sympa.pl recognizes the following command line arguments :

– - - debug — -d
Sets Sympa in debug mode and keeps it attached to the terminal. Debugging infor-
mation is output to STDERR, along with standard log information. Each function
call is traced. Useful while reporting a bug.

– service process command — process message
Sets Sympa daemon in way it process only message distribution (process message)
or in way it process only command (process command).

– - - config config file — -f config file

Forces Sympa to use an alternative configuration file. Default behavior is to use the
configuration file as defined in the Makefile ($CONFIG).

– - - mail — -m
Sympa will log calls to sendmail, including recipients. Useful for keeping track of
each mail sent (log files may grow faster though).

– - - lang catalog — -l catalog

Set this option to use a language catalog for Sympa. The corresponding catalog file
must be located in ~sympa/locale directory.

– - - keepcopy recipient directory — -k recipient directory

This option tells Sympa to keep a copy of every incoming message, instead of dele-
ting them. recipient directory is the directory to store messages.

/home/sympa/bin/sympa.pl

– - - create list - - robot robotname - - input file
/path/to/list file.xml

33

34 CHAPITRE 4. RUNNING SYMPA

Create the list described by the xml file, see 18.3, page 163.
– - - close list listname@robot

Close the list (changing its status to closed), remove aliases and remove subscribers
from DB (a dump is created in the list directory to allow restoring the list). See ??,
page ?? when you are in a family context.

– - - dump listname | ALL

Dumps subscribers of a list or all lists. Subscribers are dumped in
subscribers.db.dump.

– - - import listname

Import subscribers in the listname list. Data are read from STDIN.
– - - lowercase

Lowercases e-mail addresses in database.
– - - help — -h

Print usage of sympa.pl.
– - - make alias file

Create an aliases file in /tmp/ with all list aliases (only list which status is ’open’). It
uses the list aliases.tt2 template.

– - - version — -v
Print current version of Sympa.

– - - instanciate family familyname robotname - - input file
/path/to/family file.xml

Instantiate the family familyname. See 19, page 167.
– - - close family familyname - - robot robotname

Close the familyname family. See 19.2.4, page 173.
– - - add list familyname - - robot robotname - - input file
/path/to/list file.xml

Add the list described in the XML file to the familyname family. See 19.2.5,
page 173.

– - - modify list familyname - - robot robotname - - input file
/path/to/list file.xml

Modify the existing family list, with description contained in the XML file. See
19.2.7, page 174.

– - - sync include listaddress

Trigger an update of list members, usefull if the list uses external data sources.
– - - upgrade - - from=X - -to=Y

Runs Sympa maintenance script to upgrate from version X to version Y
– - - reload list config - -list=mylist@dom

Recreates all config_bin files. You should run this command if you edit authoriza-
tion scenarios. The list parameter is optional.

4.2 INIT script

The make install step should have installed a sysV init script in your
/etc/rc.d/init.d/ directory (you can change this at configure time with the
--with-initdir option). You should edit your runlevels to make sure Sympa starts
after Apache and MySQL. Note that MySQL should also start before Apache because
of wwsympa.fcgi.

4.3. STOPPING SYMPA AND SIGNALS 35

This script starts these deamons : sympa.pl, task manager.pl, archived.pl and boun-
ced.pl.

4.3 Stopping Sympa and signals

kill -TERM

When this signal is sent to sympa.pl (kill -TERM), the daemon is stopped ending
message distribution in progress and this can be long (for big lists). If kill -TERM is
used, sympa.pl will stop immediatly whatever a distribution message is in progress. In
this case, when sympa.pl restart, message will distributed many times.

kill -HUP

When this signal is sent to sympa.pl (kill -HUP), it switchs of the --mail logging
option and continues current task.

36 CHAPITRE 4. RUNNING SYMPA

Chapitre 5

Upgrading Sympa

Sympa upgrade is a relatively riskless operations, mainly because the install process
preserves your customizations (templates, configuration, authorization scenarios,...)
and also because Sympa automates a few things (DB update, CPAN modules instal-
lation).

5.1 Incompatible changes

New features, changes and bug fixes are summarized in the NEWS file, part of the tar.gz
(the Changelog file is a complete log file of CVS changes).

Sympa is a long-term project, so some major changes may need some extra work. The
following list is well kown changes that require some attention :
– version 5.1 (August 2005) use XHTML and CSS in web templates
– version 4.2b3 (August 2004) introduce TT2 template format
– version 4.0a5 (September 2003) change auth.conf (no default anymore so you may

have the create this file)
– version 3.3.6b2 (May 2002) the list parameter user data source as a new value in-

clude2 which is the recommended value for any list.
The file NEWS list all changes and of course, all changes that may require some attention
from the installer. As mentionned at the beginning of this file, incompatible changes
are preceded by ’*****’. While running the make install Sympa will detect the
previously installed version and will prompt you with incompatible changes between
both versions of the software. You can interrupt the install process at that stage if you
are too frightened. Output of the make install :

You are upgrading from Sympa 4.2
You should read CAREFULLY the changes listed below ; they might be incompatible changes :
<RETURN>

37

38 CHAPITRE 5. UPGRADING SYMPA

***** require new perlmodule XML-LibXML

***** You should update your DB structure (automatically performed by Sympa with MySQL), adding the following table (mySQL example) :
***** CREATE TABLE admin_table (
***** list_admin varchar(50) NOT NULL,
***** user_admin varchar(100) NOT NULL,
***** role_admin enum(’listmaster’,’owner’,’editor’) NOT NULL,
***** date_admin datetime NOT NULL,
***** update_admin datetime,
***** reception_admin varchar(20),
***** comment_admin varchar(150),
***** subscribed_admin enum(’0’,’1’),
***** included_admin enum(’0’,’1’),
***** include_sources_admin varchar(50),
***** info_admin varchar(150),
***** profile_admin enum(’privileged’,’normal’),
***** PRIMARY KEY (list_admin, user_admin,role_admin),
***** INDEX (list_admin, user_admin,role_admin)
*****);

***** Extend the generic_sso feature ; Sympa is now able to retrieve the user email address in a LDAP directory
<RETURN>

5.2 CPAN modules update

Required and optional perl modules (CPAN) installation is automatically handled at
the make time. You are asked before each module is installed. For optional modules,
associated features are listed.

Output of the make command :

Checking for REQUIRED modules:
--
perl module from CPAN STATUS
----------- --------- ------
Archive::Zip Archive-Zip OK (1.09 >= 1.05)
CGI CGI OK (2.89 >= 2.52)
DB_File DB_FILE OK (1.806 >= 1.75)
Digest::MD5 Digest-MD5 OK (2.20 >= 2.00)
FCGI FCGI OK (0.67 >= 0.67)
File::Spec File-Spec OK (0.83 >= 0.8)
IO::Scalar IO-stringy OK (2.104 >= 1.0)
LWP libwww-perl OK (5.65 >= 1.0)
Locale::TextDomain libintl-perl OK (1.10 >= 1.0)
MHonArc::UTF8 MHonArc version is too old (< 2.4.6).
>>>>>>> You must update "MHonArc" to version "" <<<<<<.
Setting FTP Passive mode

5.3. DATABASE STRUCTURE UPDATE 39

Description:
Install module MHonArc::UTF8 ? n
MIME::Base64 MIME-Base64 OK (3.05 >= 3.03)
MIME::Tools MIME-tools OK (5.411 >= 5.209)
Mail::Internet MailTools OK (1.60 >= 1.51)
Regexp::Common Regexp-Common OK (2.113 >= 1.0)
Template Template-ToolkitOK (2.13 >= 1.0)
XML::LibXML XML-LibXML OK (1.58 >= 1.0)

Checking for OPTIONAL modules:
--
perl module from CPAN STATUS
----------- --------- ------
Bundle::LWP LWP OK (1.09 >= 1.09)
Constant subroutine CGI::XHTML_DTD redefined at /usr/lib/perl5/5.8.0/constant.pm line 108, <STDIN> line 1.
CGI::Fast CGI CGI::Fast doesn’t return 1 (check it).
Crypt::CipherSaber CipherSaber OK (0.61 >= 0.50)
DBD::Oracle DBD-Oracle was not found on this system.
Description: Oracle database driver, required if you connect to a Oracle database.
Install module DBD::Oracle ?

5.3 Database structure update

Whatever RDBMS you are using (mysql, SQLite, Pg, Sybase or Oracle) Sympa will
check every database tables and fields. If one is missing sympa.pl will not start. If
you are using mysql Sympa will also check field types and will try to change them
(or create them) automatically ; assuming that the DB user configured has sufficient
privileges. If You are not using Mysql or if the DB user configured in sympa.conf
does have sufficient privileges, then you should change the database structure yourself,
as mentionned in the NEWS file.

Output of Sympa logs :

Table admin_table created in database sympa
Field ’comment_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field comment_admin added to table admin_table
Field ’date_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field date_admin added to table admin_table
Field ’include_sources_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field include_sources_admin added to table admin_table
Field ’included_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field included_admin added to table admin_table
Field ’info_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field info_admin added to table admin_table
Field ’list_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field list_admin added to table admin_table
Field ’profile_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...

40 CHAPITRE 5. UPGRADING SYMPA

Field profile_admin added to table admin_table
Field ’reception_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field reception_admin added to table admin_table
Field ’role_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field role_admin added to table admin_table
Field ’subscribed_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field subscribed_admin added to table admin_table
Field ’update_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field update_admin added to table admin_table
Field ’user_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Setting list_admin,user_admin,role_admin fields as PRIMARY
Field user_admin added to table admin_table

You might need, for some reason, to make Sympa run the migration procedure from
version X to version Y. This procedure is run automatically by sympa.pl when it de-
tects that /data structure.version is older than the current version, but you can
also run trigger this procedure yourself :

sympa.pl --upgrade --from=4.1 --to=5.2

5.4 Preserving your customizations

Sympa comes with default configuration files (templates, scenarios,...) that will be
installed in the /usr/local/sympa-stable/bin directory. If you need to cus-
tomize some of them, you should copy the file first in a safe place, ie in the
/usr/local/sympa-stable/etc directory. If you do so, the Sympa upgrade process
will preserve your site customizations.

5.5 Running 2 Sympa versions on a single server

This can be very convenient to have a stable version of Sympa and a fresh version for
test purpose, both running on the same server.

Both sympa instances must be completely partitioned, unless you want the make pro-
duction mailing lists visible through the test service.

The biggest part of the partitioning is achieved while running the ./configure. Here
is a sample call to ./configure on the test server side :

./configure --prefix=/home/sympa-dev \
--with-confdir=/home/sympa-dev/etc \
--with-mandir=/home/sympa-dev/man \
--with-initdir=/home/sympa-dev/init \

--with-piddir=/home/sympa-dev/pid

5.6. MOVING TO ANOTHER SERVER 41

--with-lockdir=/home/sympa-dev/lock \
--with-sendmail_aliases=/home/sympa-dev/etc/sympa_aliases

You can also customize more parameters via the
/home/sympa-dev/etc/sympa.conf file.

If you wish to share the same lists in both Sympa instances, then some parameters
should have the same value : home, db name, arc path

5.6 Moving to another server

If you’re upgrading and moving to another server at the same time, we recommend you
first to stop the operational service, move your data and then upgrade Sympa on the
new server. This will guarantee that Sympa upgrade procedures have been applied on
the data.

The migration process requires that you move the following data from the old server to
the new one :
– the user database. If using mysql you can probably just stop mysqld and copy the
/var/lib/mysql/sympa/ directory to the new server.

– the /usr/local/sympa-stable/expl directory that contains list config
– the directory that contains the spools
– the directory and /usr/local/sympa-stable/etc/sympa.conf

and wwsympa.conf. Sympa new installation create a file
/usr/local/sympa-stable/etc/sympa.conf (see 7) and initialize ran-
domly the cookie parameter. Changing this parameter will break all passwords.
When upgrading Sympa on a new server take care that you start with the same value
of this parameter, otherwise you will have troubles !

– the web archives
In some case, you may want to install the new version and run it for a few days before
switching the existing service to the new Sympa server. In this case perform a new
installation with an empty database and play with it. When you decide to move the
existing service to the new server :

1. stop all sympa processus on both servers,

2. transfert the database

3. edit the /data structure.version on the new server ; change the version va-
lue to reflect the old number

4. start sympa.pl, it will upgrade the database structure according the hop you do.

42 CHAPITRE 5. UPGRADING SYMPA

Chapitre 6

Mail aliases

Mail aliases are required in Sympa for sympa.pl to receive mail commands and
list messages. Management of these aliases management will depend on the MTA
(sendmail, qmail, postfix, exim) you’re using, where you store aliases and whether
you are managing virtual domains or not.

6.1 Robot aliases

An electronic list manager such as Sympa is built around two processing steps :

– a message sent to a list or to Sympa itself (commands such as subscribe or unsub-
scribe) is received by the SMTP server. The SMTP server, on reception of this mes-
sage, runs the queue program (supplied in this package) to store the message in a
spool.

– the sympa.pl daemon, set in motion at system startup, scans this spool. As soon as it
detects a new message, it processes it and performs the requested action (distribution
or processing of a command).

To separate the processing of commands (subscription, unsubscription, help requests,
etc.) from the processing of messages destined for mailing lists, a special mail alias is
reserved for administrative requests, so that Sympa can be permanently accessible to
users. The following lines must therefore be added to the sendmail alias file (often
/etc/aliases) :

sympa : ”— /usr/local/sympa-stable/bin/queue sympa@my.domain.org”
listmaster : ”— /usr/local/sympa-stable/bin/queue listmas-
ter@my.domain.org”
bounce+* : ”— /usr/local/sympa-stable/bin/bouncequeue

43

44 CHAPITRE 6. MAIL ALIASES

sympa@my.domain.org”
sympa-request : postmaster
sympa-owner : postmaster

Note : if you run Sympa virtual hosts, you will need one sympa alias entry per virtual
host (see virtual hosts section, 14, page 132).

sympa-request should be the address of the robot administrator, i.e. a person who
looks after Sympa (here postmaster@cru.fr).

sympa-owner is the return address for Sympa error messages.

The alias bounce+* is dedicated to collect bounces where VERP (variable enve-
lope return path) was actived. It is useful if welcome return path unique or
remind return path unique or the verp rate parameter is no null for at least one
list.

Don’t forget to run newaliases after any change to the /etc/aliases file !

Note : aliases based on listserv (in addition to those based on sympa) can be ad-
ded for the benefit of users accustomed to the listserv and majordomo names. For
example :

listserv: sympa
listserv-request: sympa-request
majordomo: sympa
listserv-owner: sympa-owner

6.2 List aliases

For each new list, it is necessary to create up to six mail aliases (at least three). If
you managed to setup the alias manager (see next section) then Sympa will install
automatically the following aliases for you.

For example, to create the mylist list, the following aliases must be added :

mylist : "|/usr/local/sympa-stable/bin/queue mylist@my.domain.org"
mylist-request : "|/usr/local/sympa-stable/bin/queue mylist-request@my.domain.org"
mylist-editor : "|/usr/local/sympa-stable/bin/queue mylist-editor@my.domain.org"
mylist-owner : "|/usr/local/sympa-stable/bin/bouncequeue mylist@my.domain.org
mylist-subscribe : "|/usr/local/sympa-stable/bin/queue mylist-subscribe@my.domain.org@my.domain.org"
mylist-unsubscribe : "|/usr/local/sympa-stable/bin/queue mylist-unsubscribe@my.domain.org"

6.3. ALIAS MANAGER 45

The address mylist-request should correspond to the person res-
ponsible for managing mylist (the owner). Sympa will forward mes-
sages for mylist-request to the owner of mylist, as defined in the
/usr/local/sympa-stable/expl/mylist/config file. Using this feature
means you would not need to modify the alias file if the owner of the list were to
change.

Similarly, the address mylist-editor can be used to contact the list editors if any are
defined in /usr/local/sympa-stable/expl/mylist/config. This address defini-
tion is not compulsory.

The address mylist-owner is the address receiving non-delivery reports (note that
the -owner suffix can be customized, see 7.8.4, page 62). The bouncequeue program
stores these messages in the queuebounce directory. WWSympa ((see 1.2, page 15)
may then analyze them and provide a web access to them.

The address mylist-subscribe is an address enabling users to subscribe in a manner
which can easily be explained to them. Beware : subscribing this way is so straightfor-
ward that you may find spammers subscribing to your list by accident.

The address mylist-unsubscribe is the equivalent for unsubscribing. By the way,
the easier it is for users to unsubscribe, the easier it will be for you to manage your list !

6.3 Alias manager

The alias manager.pl script does aliases management. It is run by WWSympa and
will install aliases for a new list and delete aliases for closed lists.

The script expects the following arguments :

1. add — del

2. <list name>

3. <list domain>

Example : /usr/local/sympa-stable/bin/alias manager.pl add
mylistcru.fr

/usr/local/sympa-stable/bin/alias manager.pl works on the alias file
as defined in sympa.conf) by the SENDMAIL ALIASES variable (default is
/etc/mail/sympa aliases) in the main Makefile (see 3.3, page 29). You must refer
to this aliases file in your sendmail.mc (if using sendmail) :

define(‘ALIAS_FILE’, ‘/etc/aliases,/etc/mail/sympa_aliases’)dnl

/usr/local/sympa-stable/bin/alias manager.pl runs a newaliases com-
mand (via aliaswrapper), after any changes to aliases file.

If you manage virtual domains with your mail server, then you might want to change

46 CHAPITRE 6. MAIL ALIASES

the form of aliases used by the alias manager. You can customize the list aliases
template that is parsed to generate list aliases (see17.8.8, page 155).

A L. Marcotte has written a version of ldap alias manager.pl that is LDAP en-
abled. This script is distributed with Sympa distribution ; it needs to be customized
with your LDAP parameters.

6.4 Virtual domains

When using virtual domains with sendmail or postfix, you can’t refer to
mylist@my.domain.org on the right-hand side of an /etc/aliases entry. You need
to define an additional entry in a virtual table. You can also add a unique entry, with a
regular expression, for your domain.

With Postfix, you should edit the /etc/postfix/virtual.regexp file as follows :

/^(.*)@my.domain.org$/ my.domain.org-$1

Entries in the ’aliases’ file will look like this :

my.domain.org-sympa : ”—/usr/local/sympa-stable/bin/queue
sympa@my.domain.org” my.domain.org-listA : ”—/usr/local/sympa-
stable/bin/queue listA@my.domain.org”

With Sendmail, add the following entry to /etc/mail/virtusertable file :

@my.domain.org my.domain.org-%1%3

Chapitre 7

sympa.conf parameters

The /usr/local/sympa-stable/etc/sympa.conf configuration file contains nu-
merous parameters which are read on start-up of Sympa. If you change this file, do not
forget that you will need to restart Sympa afterwards.

The /usr/local/sympa-stable/etc/sympa.conf file contains directives in the
following format :

keyword value

Comments start with the # character at the beginning of a line. Empty lines are also
considered as comments and are ignored. There should only be one directive per line,
but their order in the file is of no importance.

7.1 Site customization

7.1.1 domain

This keyword is mandatory. It is the domain name used in the From: header in replies
to administrative requests. So the smtp engine (qmail, sendmail, postfix or whatever)
must recognize this domain as a local address. The old keyword host is still recognized
but should not be used anymore.

Example: domain cru.fr

47

48 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.1.2 email

(Default value: sympa)

Username (the part of the address preceding the @ sign) used in the From: header in
replies to administrative requests.

Example: email listserv

7.1.3 listmaster

The list of e-mail addresses of listmasters (users authorized to perform global server
commands). Listmasters can be defined for each virtual host.

Example: listmaster postmaster@cru.fr,root@cru.fr

7.1.4 listmaster email

(Default value: listmaster)

Username (the part of the address preceding the @ sign) used in the listmaster email.
This parameter is useful if you want to run more than one sympa on the same host (a
sympa test for example).

If you change the default value, you must modify the sympa aliases too.

For example, if you put :

listmaster listmaster-test

you must modify the sympa aliases like this :

listmaster-test : ”— /home/sympa/bin/queue listmaster@my.domain.org”

See 6.1,page 43 for all aliases.

7.1.5 wwsympa url

(Default value: http ://<host>/wws)

7.1. SITE CUSTOMIZATION 49

This is the root URL of WWSympa.

Example: wwsympa url https ://my.server/sympa

7.1.6 soap url

This is the root URL of Sympa’s SOAP server. Sympa’s WSDL document refer to this
URL in its service section.

Example: soap url http ://my.server/sympasoap

7.1.7 spam protection

spam protection (Default value: javascript)

There is a need to protection Sympa web site against spambot which collect email
adresse in public web site. Various method are availble into Sympa and you can choose
it with spam protection and web archive spam protection parameters. Possible
value are :
– javascript : the adresse is hidden using a javascript. User who enable javascript can

see a nice mailto adresses where others have nothing.
– at : the @ char is replaced by the string ” AT ”.
– none : no protection against spammer.

7.1.8 web archive spam protection

(Default value: cookie)

Idem spam protection but restricted to web archive. A additional value is availible :
cookie which mean that users must submit a small form in order to receive a cookie
before browsing archives. This block all robot, even google and co.

7.1.9 color 0, color 1 .. color 15

They are the color definition for web interface. These parameters can be overwritten
in each virtual host definition. The color are used in the CSS file and unfortunitly they
are also in use in some web templates. The sympa admin interface show every colors
in use.

50 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.1.10 dark color light color text color bg color

error color selected color shaded color

Deprecated. They are the color definition for previous web interface. These parame-
ters are unused in 5.1 and higher version but still availible.style.css, print.css, print-
preview.css and fullPage.css

7.1.11 logo html definition

This parameter allow you to insert in the left top page cor-
ner oa piece of html code, usually to insert la logo in the
page. This is a very basic but easy customization. Example:
logo html definition <img
style="float : left ; margin-top : 7px ; margin-left : 37px ;"
src="http :/logos/mylogo.jpg" alt="my compagnie" />

7.1.12 css path

Pre-parsed CSS files (let’s say static css files) can be installed using Sympa server skins
module. These CSS files are installed in a part of the web server that can be reached
without using sympa web engine. In order to do this edit the robot.conf file and set
the css path parameter. Then retart the server and use skins module from the ”admin
sympa” page to install preparsed CSS file. The in order to replace dynamic CSS by
these static files set the css url parameter.

7.1.13 css url

By default, CSS files style.css, print.css, print-preview.css and fullPage.css are deli-
vred by Sympa web interface itself using a sympa action named css. URL look like
http ://foo.org/sympa/css/style.css . CSS file are made parsing a web tt2 file named
css.tt2. This allow dynamique definition of colors and in a near futur a complete defi-
nition of the skin, user preference skins etc.

In order to make sympa web interface faster, it is strongly recommended to install static
css file somewhere in your web site. This way sympa will deliver only one page insteed
of one page and four css page at each clic. This can be done using css url parameter.
The parameter must contain the URL of the directory where style.css, print.css, print-
preview.css and fullPage.css are installed. You can make your own a sophisticated new
skin editing these files. The server admin module include a CSS administration page
that can help you to install static CSS.

7.2. DIRECTORIES 51

7.1.14 cookie

This string is used to generate MD5 authentication keys. It allows generated authenti-
cation keys to differ from one site to another. It is also used for reversible encryption
of user passwords stored in the database. The presence of this string is one reason why
access to sympa.conf needs to be restricted to the Sympa user.

Note that changing this parameter will break all http cookies stored in users’ browsers,
as well as all user passwords and lists X509 private keys. To prevent a catastroph,
sympa.pl refuse to start if the cookie parameter was changed.

Example: cookie gh869jku5

7.1.15 create list

(Default value: public listmaster)

create list parameter is defined by an authorization scenario (see 13, page 125)

Defines who can create lists (or request list creations). Sympa will use the correspon-
ding authorization scenario.

Example: create list intranet

7.1.16 global remind

(Default value: listmaster)

global remind parameter is defined by an authorization scenario (see 13, page 125)

Defines who can run a REMIND * command.

7.2 Directories

7.2.1 home

(Default value: /usr/local/sympa-stable/expl)

The directory whose subdirectories correspond to the different lists.

52 CHAPITRE 7. SYMPA.CONF PARAMETERS

Example: home /home/sympa/expl

7.2.2 etc

(Default value: /usr/local/sympa-stable/etc)

This is the local directory for configuration files (such as edit list.conf. It contains
5 subdirectories : scenari for local authorization scenarios ; mail tt2 for the site’s
local mail templates and default list templates ; web tt2 for the site’s local html tem-
plates ; global task models for local global task models ; and list task models
for local list task models

Example: etc /home/sympa/etc

7.3 System related

7.3.1 syslog

(Default value: LOCAL1)

Name of the sub-system (facility) for logging messages.

Example: syslog LOCAL2

7.3.2 log level

(Default value: 0)

This parameter sets the verbosity of Sympa processes (including) in log files. With
level 0 only main operations are logged, in level 3 almost everything is logged.

Example: log level 2

7.3.3 log socket type

(Default value: unix)

7.4. SENDING RELATED 53

Sympa communicates with syslogd using either UDP or UNIX sockets. Set
log socket type to inet to use UDP, or unix for UNIX sockets.

7.3.4 pidfile

(Default value: /usr/local/sympa-stable/etc/sympa.pid)

The file where the sympa.pl daemon stores its process number. Warning : the sympa
user must be able to write to this file, and to create it if it doesn’t exist.

Example: pidfile /var/run/sympa.pid

7.3.5 umask

(Default value: 027)

Default mask for file creation (see umask(2)). Note that it will be interpreted as an
octual value.

Example: umask 007

7.4 Sending related

7.4.1 distribution mode

(Default value: single) Use this parameter to determine if your installation nrun only
one sympa.pl daemon that process both messages to distribute and commands (single)
or if sympa.pl will fork to run two separate processus one dedicated to message distri-
bution and one dedicated to commands and message pre-processing (fork). The second
choice make a better priority processing for message distribution and faster command
response, but it require a bit more computer ressources.

Example: distribution mode fork

7.4.2 maxsmtp

(Default value: 20)

54 CHAPITRE 7. SYMPA.CONF PARAMETERS

Maximum number of SMTP delivery child processes spawned by Sympa. This is the
main load control parameter.

Example: maxsmtp 500

7.4.3 log smtp

(Default value: off)

Set logging of each MTA call. Can be overwritten by -m sympa option.

Example: log smtp on

7.4.4 max size

(Default value: 5 Mb)

Maximum size allowed for messages distributed by Sympa. This may be customized
per virtual host or per list by setting the max size robot or list parameter.

Example: max size 2097152

7.4.5 misaddressed commands

(Default value: reject)

When a robot command is sent to a list, by default Sympa reject this message. This
feature can be turned off setting this parameter to ignore.

7.4.6 misaddressed commands regexp

(Default value: (subscribe|unsubscribe|signoff))

This is the Perl regular expression applied on messages subject and body to detect
misaddressed commands, see misaddressed commands parameter above.

7.4. SENDING RELATED 55

7.4.7 nrcpt

(Default value: 25)

Maximum number of recipients per sendmail call. This grouping factor makes it pos-
sible for the (sendmail) MTA to optimize the number of SMTP sessions for message
distribution. If needed, you can limit the number of receipient for a particular domain.
Check nrcpt by domain configuration file. (see 2.3, page 22)

7.4.8 avg

(Default value: 10)

Maximum number of different internet domains within addresses per sendmail call.

7.4.9 sendmail

(Default value: /usr/sbin/sendmail)

Absolute path to SMTP message transfer agent binary. Sympa expects this binary to be
sendmail compatible (postfix, Qmail and Exim binaries all provide sendmail compati-
bility).

Example: sendmail /usr/sbin/sendmail

7.4.10 sendmail args

(Default value: -oi -odi -oem)

Arguments passed to SMTP message transfer agent

7.4.11 sendmail aliases

(Default value: defined by makefile, sendmail aliases)

Path of the alias file that contain all lists related aliases. It is recommended to create a
specific alias file so Sympa never overright the standard alias file but only a dedicated
file.You must refer to this aliases file in your sendmail.mc :

56 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.4.12 rfc2369 header fields

(Default value: help,subscribe,unsubscribe,post,owner,archive)

RFC2369 compliant header fields (List-xxx) to be added to distributed messages. These
header-fields should be implemented by MUA’s, adding menus.

7.4.13 remove headers

(Default value: Return-Receipt-To,Precedence,X-Sequence,Disposition-Notification-To)

This is the list of headers that Sympa should remove from outgoing messages. Use it,
for example, to ensure some privacy for your users by discarding anonymous options.
It is (for the moment) site-wide. It is applied before the Sympa, rfc2369 header fields,
and custom header fields are added.

Example: remove headers Resent-Date,Resent-From,Resent-To,Resent-Message-Id,Sender,Delivered-To,Return-Receipt-To,Precedence,X-Sequence,Disposition-Notification-To

7.4.14 anonymous headers fields

(Default value: Sender,X-Sender,Received,Message-id,From,X-Envelope-To,Resent-From,Reply-To,Organization,Disposition-Notification-To,X-Envelope-From,X-X-Sender)

This parameter defines the list of SMTP header fields that should be removed when a
mailing list is setup in anonymous mode (see 20.4.3, page 194).

7.4.15 list check smtp

(Default value: NONE)

If this parameter is set with a SMTP server address, Sympa will check if alias with the
same name as the list you’re gonna create already exists on the SMTP server. It is robot
specific, i.e. you can specify a different SMTP server for every virtual host you are
running. This is needed if you are running Sympa on somehost.foo.org, but you handle
all your mail on a separate mail relay.

7.4.16 list check suffixes

(Default value: request,owner,unsubscribe)

7.5. QUOTAS 57

This paramater is a comma-separated list of admin suffixes you’re using for
Sympa aliases, i.e. mylist-request, mylist-owner etc... This parameter is used with
list check smtp parameter. It is also used to check list names at list creation time.

7.4.17 urlize min size

(Default value: 10240)

This parameter is related to the URLIZE subscriber reception mode ; it defines the mi-
nimum size (in bytes) for MIME attachments to be urlized.

7.5 Quotas

7.5.1 default shared quota

The default disk quota (the unit is Kbytes) for lists’ document repository.

7.5.2 default archive quota

The default disk quota (the unit is Kbytes) for lists’ web archives.

7.6 Spool related

7.6.1 spool

(Default value: /usr/local/sympa-stable/spool)

The parent directory which contains all the other spools.

7.6.2 queue

The absolute path of the directory which contains the queue, used both by the queue
program and the sympa.pl daemon. This parameter is mandatory.

58 CHAPITRE 7. SYMPA.CONF PARAMETERS

Example: /usr/local/sympa-stable/spool/msg

7.6.3 queuedistribute

(Default value: /usr/local/sympa-stable/spool/distribute)

This parameter is optional and retained solely for backward compatibility.

7.6.4 queuemod

(Default value: /usr/local/sympa-stable/spool/moderation)

This parameter is optional and retained solely for backward compatibility.

7.6.5 queuedigest

This parameter is optional and retained solely for backward compatibility.

7.6.6 queueauth

(Default value: /usr/local/sympa-stable/spool/auth)

This parameter is optional and retained solely for backward compatibility.

7.6.7 queueoutgoing

(Default value: /usr/local/sympa-stable/spool/outgoing)

This parameter is optional and retained solely for backward compatibility.

7.6.8 queuetopic

(Default value: /usr/local/sympa-stable/spool/topic)

This parameter is optional and retained solely for backward compatibility.

7.6. SPOOL RELATED 59

7.6.9 queuebounce

(Default value: /usr/local/sympa-stable/spool/bounce)

Spool to store bounces (non-delivery reports) received by the bouncequeue pro-
gram via the mylist-owner (unless this suffix was customized) or bounce+* addresses
(VERP) . This parameter is mandatory and must be an absolute path.

7.6.10 queuetask

(Default value: /usr/local/sympa-stable/spool/task)

Spool to store task files created by the task manager. This parameter is mandatory and
must be an absolute path.

7.6.11 tmpdir

(Default value: /usr/local/sympa-stable/spool/tmp)

Temporary directory used by OpenSSL and antiviruses.

7.6.12 sleep

(Default value: 5)

Waiting period (in seconds) between each scan of the main queue. Never set this value
to 0 !

7.6.13 clean delay queue

(Default value: 1)

Retention period (in days) for “bad” messages in spool (as specified by queue). Sympa
keeps messages rejected for various reasons (badly formatted, looping, etc.) in this
directory, with a name prefixed by BAD. This configuration variable controls the number
of days these messages are kept.

Example: clean delay queue 3

60 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.6.14 clean delay queuemod

(Default value: 10)

Expiration delay (in days) in the moderation spool (as specified by queuemod). Beyond
this deadline, messages that have not been processed are deleted. For moderated lists,
the contents of this spool can be consulted using a key along with the MODINDEX com-
mand.

7.6.15 clean delay queueauth

(Default value: 3)

Expiration delay (in days) in the authentication queue. Beyond this deadline, messages
not enabled are deleted.

7.6.16 clean delay queuesubscribe

(Default value: 10)

Expiration delay (in days) in the subscription requests queue. Beyond this deadline,
requests not validated are deleted.

7.6.17 clean delay queuetopic

(Default value: 7)

Delay for keeping message topic files (in days) in the topic queue. Beyond this dead-
line, files are deleted.

7.7 Internationalization related

7.7.1 localedir

(Default value: /usr/local/sympa-stable/locale)

7.8. BOUNCE RELATED 61

The location of multilingual catalog files. Must correspond to
~src/locale/Makefile.

7.7.2 supported lang

Example: supported lang fr,en US,de,es

This parameter lists all supported languages (comma separated) for the user interface.
The default value will include all message catalogues but it can be narrowed by the
listmaster.

7.7.3 lang

(Default value: en US)

This is the default language for Sympa. The message catalog (.po, compiled as a .mo
file) located in the corresponding locale directory will be used.

7.7.4 web recode to

If you set this parameter to a charset then web pages will be recoded to this specified
charset. This is usefull to have web pages in UTF-8, allowing multi-lingual contents.
You should check that customized web templates, topics.conf, list config files, info files
are all using the same charset.

Example :
web_recode_to utf-8

Note : if you recode web pages to utf-8, you should also add the following tag to your
mhonarc-ressources.tt2 file :

<TextEncode>
utf-8; MHonArc::UTF8::to_utf8; MHonArc/UTF8.pm
</TextEncode>

7.8 Bounce related

7.8.1 verp rate

(Default value: 0%)

62 CHAPITRE 7. SYMPA.CONF PARAMETERS

See 23.1,page 216 for more information on VERP in Sympa.

When verp rate is null VERP is not used ; if verp rate is 100% VERP is alway in
use.

VERP requires plussed aliases to be supported and the bounce+* alias to be installed.

7.8.2 welcome return path

(Default value: owner)

If set to string unique, Sympa enable VERP for welcome message and bounce pro-
cessing will remove the subscription if a bounce is received for the welcome message.
This prevent to add bad address in subscriber list.

7.8.3 remind return path

(Default value: owner)

Like welcome return path, but relates to the remind message.

7.8.4 return path suffix

(Default value: -owner)

This defines the suffix that is appended to the list name to build the return-path of
messages sent to the lists. This is the address that will receive all non delivery reports
(also called bounces).

7.8.5 expire bounce task

(Default value: daily)

This parameter tells what task will be used by task manager.pl to perform bounces
expiration. This task resets bouncing information for addresses not bouncing in the last
10 days after the latest message distribution.

7.8. BOUNCE RELATED 63

7.8.6 purge orphan bounces task

(Default value: Monthly)

This parameter tells what task will be used by task manager.pl to perform bounces
cleaning. This task delete bounces archives for unsubscribed users.

7.8.7 eval bouncers task

(Default value: daily)

The task eval bouncers evaluate all bouncing users for all lists, and fill the field
bounce score suscriber in table suscriber table with a score. This score allow
the auto-management of bouncing-users.

7.8.8 process bouncers task

(Default value: monthly)

The task process bouncers execute configured actions on bouncing users, according to
their Score. The association between score and actions has to be done in List configu-
ration, This parameter define the frequency of execution for this task.

7.8.9 minimum bouncing count

(Default value: 10)

This parameter is for the bounce-score evaluation : the bounce-score is a note that
allows the auto-management of bouncing users. This score is evaluated with,in parti-
cular, the number of messages bounces received for the user. This parameter sets the
minimum number of these messages to allow the bounce-score evaluation for a user.

7.8.10 minimum bouncing period

(Default value: 10)

Determine the minimum bouncing period for a user to allow his bounce-score evalua-
tion. Like previous parameter, if this value is too low, bounce-score will be 0.

64 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.8.11 bounce delay

(Default value: 0) Days

Another parameter for the bounce-score evaluation : This one represent the average
time (days) for a bounce to come back to sympa-server after a post was send to a list.
Usually bounces are arriving same day as the original message.

7.8.12 default bounce level1 rate

(Default value: 45)

This is the default value for bouncerslevel1 rate entry (??, page ??)

7.8.13 default bounce level2 rate

(Default value: 75)

This is the default value for bouncerslevel2 rate entry (20.5.3, page 200)

7.8.14 bounce email prefix

(Default value: bounce)

The prefix string used to build variable envelope return path (VERP). In the context of
VERP enabled, the local part of the address start with a constant string specified by
this parameter. The email is used to collect bounce. Plussed aliases are used in order
to introduce the variable part of the email that encode the subscriber address. This
parameter is useful if you want to run more than one sympa on the same host (a sympa
test for example).

If you change the default value, you must modify the sympa aliases too.

For example, if you set it as :

bounce email prefix bounce-test

you must modify the sympa aliases like this :

7.9. TUNING 65

bounce-test+* : ”— /home/sympa/bin/queuebounce
sympa@my.domain.org”

See 6.1,page 43 for all aliases.

7.8.15 bounce warn rate

(Default value: 30)

Site default value for bounce. The list owner receives a warning whenever a message
is distributed and the number of bounces exceeds this value.

7.8.16 bounce halt rate

(Default value: 50)

FOR FUTURE USE

Site default value for bounce. Messages will cease to be distributed if the number of
bounces exceeds this value.

7.8.17 default remind task

(Default value: 2month)

This parameter defines the default remind task list parameter.

7.9 Tuning

7.9.1 cache list config

Format : none | binary file (Default value: none)

If this parameter is set to binary file, then Sympa processes will maintain a binary ver-
sion of the list config structure on disk (config.bin file). This file is bypassed whe-
never the config file changes on disk. Thanks to this method, the startup of Sympa

66 CHAPITRE 7. SYMPA.CONF PARAMETERS

processes is much faster because it saves the time for parse all config files. The draw-
back of this method is that the list config cache could live for a long time (not recreated
when Sympa process restart) ; Sympa processes could still use authorization scenario
rules that have changed on disk in the meanwhile.

You should use list config cache if you are managing a big amount of lists (1000+).

7.9.2 sympa priority

(Default value: 1)

Priority applied to Sympa commands while running the spool.

Available since release 2.3.1.

7.9.3 request priority

(Default value: 0)

Priority for processing of messages for mylist-request, i.e. for owners of the list.

Available since release 2.3.3

7.9.4 owner priority

(Default value: 9)

Priority for processing messages for mylist-owner in the spool. This address will re-
ceive non-delivery reports (bounces) and should have a low priority.

Available since release 2.3.3

7.9.5 default list priority

(Default value: 5)

Default priority for messages if not defined in the list configuration file.

Available since release 2.3.1.

7.10. DATABASE RELATED 67

7.10 Database related

The following parameters are needed when using an RDBMS, but are otherwise not
required :

7.10.1 update db field types

Format : update db field types auto | disabled

(Default value: auto)

This parameter defines if Sympa may automatically update database structure to match
the expected datafield types. This feature is only available with mysql.

7.10.2 db type

Format : db type mysql | SQLite | Pg | Oracle | Sybase

Database management system used (e.g. MySQL, Pg, Oracle)

This corresponds to the PERL DataBase Driver (DBD) name and is therefore case-
sensitive.

7.10.3 db name

(Default value: sympa)

Name of the database containing user information. See detailed notes on database struc-
ture, ??, page ??. If you are using SQLite, then this parameter is the DB file name.

7.10.4 db host

Database host name.

68 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.10.5 db port

Database port.

7.10.6 db user

User with read access to the database.

7.10.7 db passwd

Password for db user.

7.10.8 db timeout

This parameter is used for SQLite only.

7.10.9 db options

If these options are defined, they will be appended to the database connect string.

Example for MySQL :
db_options mysql_read_default_file=/home/joe/my.cnf

7.10.10 db env

Gives a list of environment variables to set before database connexion. This is a ’ ;’
separated list of variable assignments.

Example for Oracle :
db_env ORACLE_TERM=vt100;ORACLE_HOME=/var/hote/oracle/7.3.4

7.10.11 db additional subscriber fields

If your subscriber table database table has more fields than required by Sympa (be-
cause other programs access this table), you can make Sympa recognize these fields.

7.11. LOOP PREVENTION 69

You will then be able to use them from within mail/web templates and authorization
scenarios (as [subscriber->field]). These fields will also appear in the list members re-
view page and will be editable by the list owner. This parameter is a comma-separated
list.

Example :

db_additional_subscriber_fields billing_delay,subscription_expiration

7.10.12 db additional user fields

If your user table database table has more fields than required by Sympa (because
other programs access this table), you can make Sympa recognize these fields. You will
then be able to use them from within mail/web templates (as [user->field]).

This parameter is a comma-separated list.

Example :

db_additional_user_fields address,gender

7.10.13 purge user table task

This parameter refers to the name of the task (Example: monthly) that will be regularly
run by the task manager.pl to remove entries in the user table table that have no
corresponding entries in the subscriber table table.

7.11 Loop prevention

The following define your loop prevention policy for commands. (see 16.7, page 144)

7.11.1 loop command max

(Default value: 200)

The maximum number of command reports sent to an e-mail address. When it is rea-
ched, messages are stored with the BAD prefix, and reports are no longer sent.

70 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.11.2 loop command sampling delay

(Default value: 3600)

This parameter defines the delay in seconds before decrementing the counter of reports
sent to an e-mail address.

7.11.3 loop command decrease factor

(Default value: 0.5)

The decrementation factor (from 0 to 1), used to determine the new report counter
after expiration of the delay.

7.11.4 loop prevention regex

(Default value: mailer-daemon|sympa|listserv|majordomo|smartlist|mailman)

This regular expression is applied to messages sender address. If the sender address
matches the regular expression, then the message is rejected. The goal of this parameter
is to prevent loops between Sympa and other robots.

7.12 S/MIME configuration

Sympa can optionally verify and use S/MIME signatures for security purposes. In this
case, the three first following parameters must be set by the listmaster (see 26.4.2,
page 223). The two others are optionnal.

7.12.1 openssl

The path for the openSSL binary file.

7.12.2 capath

The directory path use by openssl for trusted CA certificates.

7.13. ANTIVIRUS PLUG-IN 71

A directory of trusted certificates. The certificates should have names of the form :
hash.0 or have symbolic links to them of this form (”hash” is the hashed certificate
subject name : see the -hash option of the openssl x509 utility). This directory should
be the same as the directory SSLCACertificatePath specified for mod ssl module for
Apache.

7.12.3 cafile

This parameter sets the all-in-one file where you can assemble the Certificates of Cer-
tification Authorities (CA) whose clients you deal with. These are used for Client Au-
thentication. Such a file is simply the concatenation of the various PEM-encoded Cer-
tificate files, in order of preference. This can be used alternatively and/or additionally
to capath.

7.12.4 key passwd

The password for list private key encryption. If not defined, Sympa assumes that list
private keys are not encrypted.

7.12.5 chk cert expiration task

States the model version used to create the task which regularly checks the certificate
expiration dates and warns users whose certificate have expired or are going to. To
know more about tasks, see 16.8, page 144.

7.12.6 crl update task

Specifies the model version used to create the task which regurlaly updates the certifi-
cate revocation lists.

7.13 Antivirus plug-in

Sympa can optionally check incoming messages before delivering them, using an ex-
ternal antivirus solution. You must then set two parameters.

72 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.13.1 antivirus path

The path to your favorite antivirus binary file (including the binary file).

Example :

antivirus_path /usr/local/bin/uvscan

7.13.2 antivirus args

The arguments used by the antivirus software to look for viruses. You must set them so
as to get the virus name. You should use, if available, the ’unzip’ option and check all
extensions.

Example with uvscan :

antivirus_args --summary --secure

Example with fsav :

antivirus_args --dumb --archive

Exemple with AVP :

antivirus_path /opt/AVP/kavscanner
antivirus_args -Y -O- -MP -I0

Exemple with Sophos :

antivirus_path /usr/local/bin/sweep
antivirus_args -nc -nb -ss -archive

Exemple with Clam :

antivirus_path /usr/local/bin/clamscan
antivirus_args --stdout

7.13.3 antivirus notify

sender — nobody

(Default value: sender)

This parameter tells if Sympa should notify the email sender when a virus has been
detected.

Chapitre 8

Sympa and its database

Most basic feature of Sympa will work without a RDBMS, but WWSympa and bounced
require a relational database. Currently you can use one of the following RDBMS :
MySQL, SQLite, PostgreSQL, Oracle, Sybase. Interfacing with other RDBMS requires
only a few changes in the code, since the API used, DBI1 (DataBase Interface), has
DBD (DataBase Drivers) for many RDBMS.

Sympa stores three kind of information in the database, each in one table :
– User preferences and passwords are stored in the user table table
– List subscription informations are stored in the subscriber table table, along with

subscription options. This table also contains the cache for included users (if using
include2 mode).

– List administrative informations are stored in the admin table table if using include2
mode, along with owner and editor options. This table also contains the cache for
included owners and editors.

8.1 Prerequisites

You need to have a DataBase System installed (not necessarily on the same host as
Sympa), and the client libraries for that Database installed on the Sympa host ; provided,
of course, that a PERL DBD (DataBase Driver) is available for your chosen RDBMS !
Check the DBI Module Availability2.

1http ://www.symbolstone.org/technology/perl/DBI/
2http ://www.symbolstone.org/technology/perl/DBI/

73

http://www.symbolstone.org/technology/perl/DBI/
http://www.symbolstone.org/technology/perl/DBI/

74 CHAPITRE 8. SYMPA AND ITS DATABASE

8.2 Installing PERL modules

Sympa will use DBI to communicate with the database system and therefore requires
the DBD for your database system. DBI and DBD : :YourDB (Msql-Mysql-modules
for MySQL) are distributed as CPAN modules. Refer to 3.2.3, page 27 for installation
details of these modules.

8.3 Creating a sympa DataBase

8.3.1 Database structure

The sympa database structure is slightly different from the structure of a subscribers
file. A subscribers file is a text file based on paragraphs (similar to the config file) ;
each paragraph completely describes a subscriber. If somebody is subscribed to two
lists, he/she will appear in both subscribers files.

The DataBase distinguishes information relative to a person (e-mail, real name, pass-
word) and his/her subscription options (list concerned, date of subscription, reception
option, visibility option). This results in a separation of the data into two tables : the
user table and the subscriber table, linked by a user/subscriber e-mail.

The table concerning owners and editors, the admin table, is made on the same way as
the subscriber table but is used only in include2 mode. It constains owner and editor
options (list concerned, administrative role, date of “subscription”, reception option,
private info, gecos and profile option for owners).

8.3.2 Database creation

The create db script below will create the sympa database for you. You can find it in
the script/ directory of the distribution (currently scripts are available for MySQL,
SQLite, PostgreSQL, Oracle and Sybase).

– MySQL database creation script

MySQL Database creation script

CREATE DATABASE sympa;

Connect to DB
\r sympa

CREATE TABLE user_table (

8.3. CREATING A SYMPA DATABASE 75

email_user varchar (100) NOT NULL,
gecos_user varchar (150),
password_user varchar (40),

cookie_delay_user int,
lang_user varchar (10),
attributes_user varchar(255),
PRIMARY KEY (email_user)
);

CREATE TABLE subscriber_table (
list_subscriber varchar (50) NOT NULL,

user_subscriber varchar (100) NOT NULL,
robot_subscriber varchar (80) NOT NULL,
date_subscriber datetime NOT NULL,
update_subscriber datetime,
visibility_subscriber varchar (20),
reception_subscriber varchar (20),
topics_subscriber varchar (200),
bounce_subscriber varchar (35),
bounce_score_subscriber smallint (6),
bounce_address_subscriber varchar (100),
comment_subscriber varchar (150),
subscribed_subscriber int(1),
included_subscriber int(1),
include_sources_subscriber varchar(50),
PRIMARY KEY (list_subscriber, user_subscriber, robot_subscriber),
INDEX (user_subscriber,list_subscriber,robot_subscriber)
);

CREATE TABLE admin_table (
list_admin varchar(50) NOT NULL,
user_admin varchar(100) NOT NULL,
robot_admin varchar(80) NOT NULL,

role_admin enum(’listmaster’,’owner’,’editor’) NOT NULL,
date_admin datetime NOT NULL,
update_admin datetime,
reception_admin varchar(20),
comment_admin varchar(150),
subscribed_admin int(1),
included_admin int(1),
include_sources_admin varchar(50),
info_admin varchar(150),
profile_admin enum(’privileged’,’normal’),
PRIMARY KEY (list_admin, user_admin, robot_admin, role_admin),
INDEX (list_admin, user_admin,robot_admin,role_admin)
);

CREATE TABLE netidmap_table (
netid_netidmap varchar (100) NOT NULL,

serviceid_netidmap varchar (100) NOT NULL,

76 CHAPITRE 8. SYMPA AND ITS DATABASE

robot_netidmap varchar (80) NOT NULL,
email_netidmap varchar (100),
PRIMARY KEY (netid_netidmap, serviceid_netidmap, robot_netidmap)

);

CREATE TABLE log_table (
id INT UNSIGNED DEFAULT 0 NOT NULL auto_increment,
date int NOT NULL,
pid int,
process enum (’task’,’archived’,’sympa’,’wwsympa’,’bounced’),
email_user varchar (100),
auth enum (’smtp’,’md5’,’smime’,’null’),
ip varchar (15),
operation varchar (40),
list varchar (50),
robot varchar (60),
arg varchar (100),
status varchar (100),
subscriber_count int,
PRIMARY KEY (id),
INDEX (date),
INDEX (robot),
INDEX (list),
INDEX (email_user)
);

– SQLiteL database creation script

CREATE TABLE user_table (
email_user varchar (100) NOT NULL,
gecos_user varchar (150),
password_user varchar (40),

cookie_delay_user integer,
lang_user varchar (10),
attributes_user varchar(255),
PRIMARY KEY (email_user)
);

CREATE TABLE subscriber_table (
list_subscriber varchar (50) NOT NULL,

user_subscriber varchar (100) NOT NULL,
robot_subscriber varchar (80) NOT NULL,
date_subscriber timestamp NOT NULL,
update_subscriber timestamp,
visibility_subscriber varchar (20),
reception_subscriber varchar (20),
topics_subscriber varchar (200),
bounce_subscriber varchar (35),

8.3. CREATING A SYMPA DATABASE 77

bounce_address_subscriber varchar (100),
comment_subscriber varchar (150),
subscribed_subscriber boolean,
included_subscriber boolean,
include_sources_subscriber varchar(50),
bounce_score_subscriber integer,
PRIMARY KEY (list_subscriber, user_subscriber, robot_subscriber)
);
CREATE INDEX subscriber_idx ON subscriber_table (user_subscriber,list_subscriber,robot_subscriber);

CREATE TABLE admin_table (
list_admin varchar(50) NOT NULL,
user_admin varchar(100) NOT NULL,
robot_admin varchar(80) NOT NULL,

role_admin varchar(15) NOT NULL,
date_admin timestamp NOT NULL,
update_admin timestamp,
reception_admin varchar(20),
comment_admin varchar(150),
subscribed_admin boolean,
included_admin boolean,
include_sources_admin varchar(50),
info_admin varchar(150),
profile_admin varchar(15),
PRIMARY KEY (list_admin, user_admin, robot_admin, role_admin)
);
CREATE INDEX admin_idx ON admin_table(list_admin, user_admin, robot_admin, role_admin);

CREATE TABLE netidmap_table (
netid_netidmap varchar (100) NOT NULL,

serviceid_netidmap varchar (100) NOT NULL,
robot_netidmap varchar (80) NOT NULL,

email_netidmap varchar (100),
PRIMARY KEY (netid_netidmap, serviceid_netidmap, robot_netidmap)

);
CREATE INDEX netidmap_idx ON netidmap_table(netid_netidmap, serviceid_netidmap, robot_netidmap);

– PostgreSQL database creation script

-- PostgreSQL Database creation script

CREATE DATABASE sympa;

-- Connect to DB
\connect sympa

DROP TABLE user_table;
CREATE TABLE user_table (

email_user varchar (100) NOT NULL,
gecos_user varchar (150),

78 CHAPITRE 8. SYMPA AND ITS DATABASE

cookie_delay_user int4,
password_user varchar (40),
lang_user varchar (10),

attributes_user varchar (255),
CONSTRAINT ind_user PRIMARY KEY (email_user)
);

DROP TABLE subscriber_table;
CREATE TABLE subscriber_table (

list_subscriber varchar (50) NOT NULL,
user_subscriber varchar (100) NOT NULL,
robot_subscriber varchar (80) NOT NULL,
date_subscriber timestamp with time zone NOT NULL,
update_subscriber timestamp with time zone,
visibility_subscriber varchar (20),
reception_subscriber varchar (20),
topics_subscriber varchar (200),
bounce_subscriber varchar (35),
bounce_score_subscriber int4,
bounce_address_subscriber varchar (100),
comment_subscriber varchar (150),
subscribed_subscriber smallint,
included_subscriber smallint,
include_sources_subscriber varchar(50),
CONSTRAINT ind_subscriber PRIMARY KEY (list_subscriber, user_subscriber, robot_subscriber)
);
CREATE INDEX subscriber_idx ON subscriber_table (user_subscriber,list_subscriber,robot_subscriber);

DROP TABLE admin_table;
CREATE TABLE admin_table (
list_admin varchar(50) NOT NULL,
user_admin varchar(100) NOT NULL,
robot_admin varchar(80) NOT NULL,

role_admin varchar(15) NOT NULL,
date_admin timestamp with time zone NOT NULL,
update_admin timestamp with time zone,
reception_admin varchar(20),
comment_admin varchar(150),
subscribed_admin smallint,
included_admin smallint,
include_sources_admin varchar(50),
info_admin varchar(150),
profile_admin varchar(15),

CONSTRAINT ind_admin PRIMARY KEY (list_admin, user_admin, robot_admin, role_admin)
);
CREATE INDEX admin_idx ON admin_table(list_admin, user_admin,robot_admin, role_admin);

DROP TABLE netidmap_table;
CREATE TABLE netidmap_table (

netid_netidmap varchar (100) NOT NULL,

8.3. CREATING A SYMPA DATABASE 79

serviceid_netidmap varchar (100) NOT NULL,
robot_netidmap varchar (80) NOT NULL,

email_netidmap varchar (100),
CONSTRAINT ind_netidmap PRIMARY KEY (netid_netidmap, serviceid_netidmap, robot_netidmap)

);
CREATE INDEX netidmap_idx ON netidmap_table(netid_netidmap, serviceid_netidmap, robot_netidmap);

– Sybase database creation script

/* Sybase Database creation script 2.5.2 */
/* Thierry Charles <tcharles@electron-libre.com> */
/* 15/06/01 : extend password_user */

/* sympa database must have been created */
/* eg: create database sympa on your_device_data=10 log on your_device_log=4 */
use sympa
go

create table user_table
(

email_user varchar(100) not null,
gecos_user varchar(150) null ,
password_user varchar(40) null ,
cookie_delay_user numeric null ,
lang_user varchar(10) null ,
attributes_user varchar(255) null ,
constraint ind_user primary key (email_user)

)
go

create index email_user_fk on user_table (email_user)
go

create table subscriber_table
(

list_subscriber varchar(50) not null,
user_subscriber varchar(100) not null,
robot_subscriber varchar(80) not null,
date_subscriber datetime not null,
update_subscriber datetime null,
visibility_subscriber varchar(20) null ,
reception_subscriber varchar(20) null ,
topics_subscriber varchar(200) null,
bounce_subscriber varchar(35) null ,
bounce_score_subscriber numeric null ,
comment_subscriber varchar(150) null ,
subscribed_subscriber numeric null ,
included_subscriber numeric null ,
include_sources_subscriber varchar(50) null ,

80 CHAPITRE 8. SYMPA AND ITS DATABASE

constraint ind_subscriber primary key (list_subscriber, user_subscriber, robot_subscriber)
)
go

create index list_subscriber_fk on subscriber_table (list_subscriber)
go

create index user_subscriber_fk on subscriber_table (user_subscriber)
go

create index robot_subscriber_fk on subscriber_table (robot_subscriber)
go

create table admin_table
(
list_admin varchar(50) not null,
user_admin varchar(100) not null,
robot_admin varchar(80) not null,

role_admin varchar(15) not null,
date_admin datetime not null,
update_admin datetime null,
reception_admin varchar(20) null,
comment_admin varchar(150) null,
subscribed_admin numeric null,
included_admin numeric null,
include_sources_admin varchar(50) null,
info_admin varchar(150) null,
profile_admin varchar(15) null,

constraint ind_admin primary key (list_admin, user_admin,robot_admin,role_admin)
)
go

create index list_admin_fk on admin_table (list_admin)
go

create index user_admin_fk on admin_table (user_admin)
go

create index robot_admin_fk on admin_table (robot_admin)
go

create index role_admin_fk on admin_table (role_admin)
go

create table netidmap_table
(

netid_netidmap varchar (100) NOT NULL,
serviceid_netidmap varchar (100) NOT NULL,
robot_netidmap varchar (80) NOT NULL,

email_netidmap varchar (100),

8.3. CREATING A SYMPA DATABASE 81

constraint ind_netidmap primary key (netid_netidmap, serviceid_netidmap, robot_netidmap)
)
go

create index netid_netidmap_fk on admin_table (netid_netidmap)
go

create index serviceid_netidmap_fk on admin_table (serviceid_netidmap)
go

create index robot_netidmap_fk on admin_table (robot_netidmap)
go

– Oracle database creation script

Oracle Database creation script
Fabien Marquois <fmarquoi@univ-lr.fr>

/Bases/oracle/product/7.3.4.1/bin/sqlplus loginsystem/passwdoracle <<-!
create user SYMPA identified by SYMPA default tablespace TABLESP

temporary tablespace TEMP;
grant create session to SYMPA;
grant create table to SYMPA;
grant create synonym to SYMPA;
grant create view to SYMPA;
grant execute any procedure to SYMPA;
grant select any table to SYMPA;
grant select any sequence to SYMPA;
grant resource to SYMPA;

!

/Bases/oracle/product/7.3.4.1/bin/sqlplus SYMPA/SYMPA <<-!
CREATE TABLE user_table (

email_user varchar2(100) NOT NULL,
gecos_user varchar2(150),
password_user varchar2(40),
cookie_delay_user number,
lang_user varchar2(10),

attributes_user varchar2(500),
CONSTRAINT ind_user PRIMARY KEY (email_user)

);
CREATE TABLE subscriber_table (

list_subscriber varchar2(50) NOT NULL,
user_subscriber varchar2(100) NOT NULL,
robot_subscriber varchar2(80) NOT NULL,
date_subscriber date NOT NULL,

update_subscriber date,
visibility_subscriber varchar2(20),
reception_subscriber varchar2(20),

82 CHAPITRE 8. SYMPA AND ITS DATABASE

topics_subscriber varchar2(200),
bounce_subscriber varchar2 (35),

bounce_score_subscriber number,
bounce_address_subscriber varchar2 (100),
comment_subscriber varchar2 (150),

subscribed_subscriber number NULL constraint cons_subscribed_subscriber CHECK (subscribed_subscriber in (0,1)),
included_subscriber number NULL constraint cons_included_subscriber CHECK (included_subscriber in (0,1)),
include_sources_subscriber varchar2(50),

CONSTRAINT ind_subscriber PRIMARY KEY (list_subscriber,user_subscriber,robot_subscriber)
);
CREATE TABLE admin_table (
list_admin varchar2(50) NOT NULL,
user_admin varchar2(100) NOT NULL,
robot_admin varchar2(80) NOT NULL,

role_admin varchar2(20) NOT NULL,
date_admin date NOT NULL,
update_admin date,
reception_admin varchar2(20),
comment_admin varchar2(150),
subscribed_admin number NULL constraint cons_subscribed_admin CHECK (subscribed_admin in (0,1)),
included_admin number NULL constraint cons_included_admin CHECK (included_admin in (0,1)),
include_sources_admin varchar2(50),
info_admin varchar2(150),
profile_admin varchar2(20),

CONSTRAINT ind_admin PRIMARY KEY (list_admin,user_admin,robot_admin,role_admin)
);

CREATE TABLE netidmap_table (
netid_netidmap varchar (100) NOT NULL,

serviceid_netidmap varchar (100) NOT NULL,
robot_netidmap varchar (80) NOT NULL,

email_netidmap varchar (100),
CONSTRAINT ind_netidmap PRIMARY KEY (netid_netidmap, serviceid_netidmap, robot_netidmap)

);

!

You can execute the script using a simple SQL shell such as mysql, psql or sqlplus.

Example :

mysql < create_db.mysql

8.4. SETTING DATABASE PRIVILEGES 83

8.4 Setting database privileges

We strongly recommend you restrict access to sympa database. You will then set
db user and db passwd in sympa.conf.

With MySQL :

grant all on sympa.* to sympa@localhost identified by ’your_password’;
flush privileges;

8.5 Importing subscribers data

8.5.1 Importing data from a text file

You can import subscribers data into the database from a text file having one entry per
line : the first field is an e-mail address, the second (optional) field is the free form
name. Fields are spaces-separated.

Example :

Data to be imported
email gecos
john.steward@some.company.com John - accountant
mary.blacksmith@another.company.com Mary - secretary

To import data into the database :

cat /tmp/my_import_file | sympa.pl --import=my_list

(see 4.1, page 33).

8.5.2 Importing data from subscribers files

If a mailing list was previously setup to store subscribers into subscribers file (the
default mode in versions older then 2.2b) you can load subscribers data into the sympa
database. The easiest way is to edit the list configuration using WWSympa (this requires
listmaster privileges) and change the data source from file to database ; subscribers
data will be loaded into the database at the same time.

If the subscribers file is big, a timeout may occur during the FastCGI execution
(Note that you can set a longer timeout with the -idle-timeout option of the
FastCgiServer Apache configuration directive). In this case, or if you have not ins-
talled WWSympa, you should use the load subscribers.pl script.

84 CHAPITRE 8. SYMPA AND ITS DATABASE

8.6 Management of the include cache

You may dynamically add a list of subscribers, editors or owners to a list with Sympa’s
include2 user data source. Sympa is able to query multiple data sources (RDBMS,
LDAP directory, flat file, a local list, a remote list) to build a mailing list.

Sympa used to manage the cache of such included subscribers in a DB File (include
mode) but now stores subscribers, editors and owners in the database (include2 mode).
These changes brought the following advantages :
– Sympa processes are smaller when dealing with big mailing lists (in include mode)
– Cache update is now performed regularly by a dedicated process, the task manager
– Mixed lists (included + subscribed users) can now be created
– Sympa can now provide reception options for included members
– Bounces information can be managed for included members
– Sympa keeps track of the data sources of a member (available on the web REVIEW

page)
– included members can also subscribe to the list. It allows them to remain in the list

though they might no more be included.

8.7 Extending database table format

You can easily add other fields to the three tables, they will not disturb Sympa because
it lists explicitely the field it expects in SELECT queries.

Moreover you can access these database fields from within Sympa (in templates), as far
as you list these additional fields in sympa.conf (See 7.10.11, page 68 and 7.10.12,
page 69).

8.8 Sympa configuration

To store subscriber information in your newly created database, you first need to tell
Sympa what kind of database to work with, then you must configure your list to access
the database.

You define the database source in sympa.conf : db type, db name, db host,
db user, db passwd.

If you are interfacing Sympa with an Oracle database, db name is the SID.

All your lists are now configured to use the database, unless you set list parameter
user data source to file or include.

8.8. SYMPA CONFIGURATION 85

Sympa will now extract and store user information for this list using the database ins-
tead of the subscribers file. Note however that subscriber information is dumped
to subscribers.db.dump at every shutdown, to allow a manual rescue restart (by
renaming subscribers.db.dump to subscribers and changing the user data source para-
meter), if ever the database were to become inaccessible.

86 CHAPITRE 8. SYMPA AND ITS DATABASE

Chapitre 9

WWSympa, Sympa’s web
interface

WWSympa is Sympa’s web interface.

9.1 Organization

WWSympa is fully integrated with Sympa. It uses sympa.conf and Sympa’s libraries.
The default Sympa installation will also install WWSympa.

Every single piece of HTML in WWSympa is generated by the CGI code using template
files (See 16.1, page 139). This facilitates internationalization of pages, as well as per-
site customization.

The code consists of one single PERL CGI script, WWSympa.fcgi. To enhance per-
formance you can configure WWSympa to use FastCGI ; the CGI will be persistent in
memory.
All data will be accessed through the CGI, including web archives. This is required to
allow the authentication scheme to be applied systematically.

Authentication is based on passwords stored in the database table user table ; if the
appropriate Crypt : :CipherSaber is installed, password are encrypted in the da-
tabase using reversible encryption based on RC4. Otherwise they are stored in clear
text. In both cases reminding of passwords is possible. To keep track of authentication
information WWSympa uses HTTP cookies stored on the client side. The HTTP cookie
only indicates that a specified e-mail address has been authenticated ; permissions are
evaluated when an action is requested.

87

88 CHAPITRE 9. WWSYMPA, SYMPA’S WEB INTERFACE

The same web interface is used by the listmaster, list owners, subscribers and others.
Depending on permissions, the same URL may generate a different view.

WWSympa’s main loop algorithm is roughly the following :

1. Check authentication information returned by the HTTP cookie

2. Evaluate user’s permissions for the requested action

3. Process the requested action

4. Set up variables resulting from the action

5. Parse the HTML template files

9.2 Web server setup

9.2.1 wwsympa.fcgi access permissions

Because Sympa and WWSympa share a lot of files, wwsympa.fcgi, must run with the
same uid/gid as archived.pl, bounced.pl and sympa.pl. There are different ways
to achieve this :
– SetuidPerl : this is the default method but might be insecure. If you don’t set the

- -enable secure configure option, wwsympa.fcgi is installed with the SetUID bit
set. On most systems you will need to install the suidperl package.

– Sudo : use sudo to run wwsympa.fcgi as user sympa. Your Apache configuration
should use wwsympa sudo wrapper.pl instead of wwsympa.fcgi. You should edit
your /etc/sudoers file (with visudo command) as follows :

apache ALL = (sympa) NOPASSWD: /usr/local/sympa-stable/bin/wwsympa.fcgi

– Dedicated Apache server : run a dedicated Apache server with sympa.sympa as
uid.gid (The Apache default is apache.apache).

– Apache suExec : use an Apache virtual host with sympa.sympa as uid.gid ; Apache
needs to be compiled with suexec. Be aware that the Apache suexec usually define a
lowest UID/GID allowed to be a target user for suEXEC. For most systems including
binaries distribution of Apache, the default value 100 is common. So Sympa UID
(and Sympa GID) must be higher then 100 or suexec must be tuned in order to allow
lower UID/GID. Check http ://httpd.apache.org/docs/suexec.html#install for details
The User and Group directive have to be set before the FastCgiServer directive is
encountered.

– C wrapper : otherwise, you can overcome restrictions on the execution of suid scripts
by using a short C program, owned by sympa and with the suid bit set, to start
wwsympa.fcgi. Here is an example (with no guarantee attached) :

#include <unistd.h>

#define WWSYMPA "/usr/local/sympa-stable/bin/wwsympa.fcgi"

int main(int argn, char **argv, char **envp) {

9.2. WEB SERVER SETUP 89

argv[0] = WWSYMPA;
execve(WWSYMPA,argv,envp);

}

9.2.2 Installing wwsympa.fcgi in your Apache server

If you chose to run wwsympa.fcgi as a simple CGI, you simply need to script alias it.

Example :
ScriptAlias /sympa /usr/local/sympa-stable/bin/wwsympa.fcgi

Running FastCGI will provide much faster responses from your server and reduce load
(to understand why, read http ://www.fastcgi.com/fcgi-devkit-2.1/doc/fcgi-perf.htm)

Example :
FastCgiServer /usr/local/sympa-stable/bin/wwsympa.fcgi -processes 2
<Location /sympa>

SetHandler fastcgi-script
</Location>

ScriptAlias /sympa /usr/local/sympa-stable/bin/wwsympa.fcgi

If you are using sudo (see evious subsection), then replace wwsympa.fcgi calls with
wwsympa sudo wrapper.pl.

If you run virtual hosts, then each FastCgiServer(s) can serve multiple hosts. Therefore
you need to define it in the common section of your Apache configuration file.

9.2.3 Using FastCGI

FastCGI is an extention to CGI that provides persistency for CGI programs. It is ex-
temely useful with WWSympa since source code interpretation and all initialisation
tasks are performed only once, at server startup ; then file wwsympa.fcgi instances are
waiting for clients requests.

WWSympa can also work without FastCGI, depending on the use fast cgi parameter
(see 9.3.15, page 92).

To run WWSympa with FastCGI, you need to install :

http://www.fastcgi.com/fcgi-devkit-2.1/doc/fcgi-perf.htm
http://www.fastcgi.com/

90 CHAPITRE 9. WWSYMPA, SYMPA’S WEB INTERFACE

– mod fastcgi : the Apache module that provides FastCGI features
– FCGI : the Perl module used by WWSympa

9.3 wwsympa.conf parameters

9.3.1 arc path

(Default value: /home/httpd/html/arc)
Where to store html archives. This parameter is used by the archived.pl daemon. It
is a good idea to install the archive outside the web hierarchy to prevent possible back
doors in the access control powered by WWSympa. However, if Apache is configured
with a chroot, you may have to install the archive in the Apache directory tree.

9.3.2 archive default index thrd — mail

(Default value: thrd)
The default index organization when entering web archives : either threaded or chro-
nological order.

9.3.3 archived pidfile

(Default value: archived.pid)
The file containing the PID of archived.pl.

9.3.4 bounce path

(Default value: /var/bounce)
Root directory for storing bounces (non-delivery reports). This parameter is used
mainly by the bounced.pl daemon.

9.3.5 bounced pidfile

(Default value: bounced.pid)
The file containing the PID of bounced.pl.

9.3. WWSYMPA.CONF PARAMETERS 91

9.3.6 cookie expire

(Default value: 0) Lifetime (in minutes) of HTTP cookies. This is the default value
when not set explicitly by users.

9.3.7 cookie domain

(Default value: localhost)
Domain for the HTTP cookies. If beginning with a dot (’.’), the cookie is available
within the specified internet domain. Otherwise, for the specified host. Example :

cookie_domain cru.fr
cookie is available for host ’cru.fr’

cookie_domain .cru.fr
cookie is available for any host within ’cru.fr’ domain

The only reason for replacing the default value would be where WWSympa’s authenti-
cation process is shared with an application running on another host.

9.3.8 default home

(Default value: home)
Organization of the WWSympa home page. If you have only a few lists, the default
value ‘home’ (presenting a list of lists organized by topic) should be replaced by ‘lists’
(a simple alphabetical list of lists).

9.3.9 icons url

(Default value: /icons)
URL of WWSympa’s icons directory.

9.3.10 log facility

WWSympa will log using this facility. Defaults to Sympa’s syslog facility. Configure
your syslog according to this parameter.

92 CHAPITRE 9. WWSYMPA, SYMPA’S WEB INTERFACE

9.3.11 mhonarc

(Default value: /usr/bin/mhonarc)
Path to the (superb) MhOnArc program. Required for html archives
http ://www.oac.uci.edu/indiv/ehood/mhonarc.html

9.3.12 htmlarea url

(Default value: undefined)
Relative URL to the (superb) online html editor HTMLarea. If you have installed ja-
vascript application you can use it when editing html document in the shared document
repository. In order to activate this pluggin the value of this parameter should point
to the root directory where HTMLarea is installed. HTMLarea is a free opensource
software you can download here : http ://sf.net/projects/itools-htmlarea/

9.3.13 password case sensitive — insensitive

(Default value: insensitive)
If set to insensitive, WWSympa’s password check will be insensitive. This only
concerns passwords stored in Sympa database, not the ones in LDAP.

Be careful : in previous 3.xx versions of Sympa, passwords were lowercased before da-
tabase insertion. Therefore changing to case-sensitive password checking could bring
you some password checking problems.

9.3.14 title

(Default value: Mailing List Service)
The name of your mailing list service. It will appear in the Title section of WWSympa.

9.3.15 use fast cgi 0 — 1

(Default value: 1)
Choice of whether or not to use FastCGI. On listes.cru.fr, using FastCGI increases WW-
Sympa performance by as much as a factor of 10. Refer to http ://www.fastcgi.com/ and
the Apache config section of this document for details about FastCGI.

http://www.fastcgi.com/

9.4. MHONARC 93

9.4 MhOnArc

MhOnArc is a neat little converter from mime messages to html. Refer to
http ://www.oac.uci.edu/indiv/ehood/mhonarc.html.

The long mhonarc resource file is used by WWSympa in a particular way. MhOnArc is
called to produce not a complete html document, but only a part of it to be included in a
complete document (starting with <HTML> and terminating with </HTML> ;-)). The
best way is to use the MhOnArc resource file provided in the WWSympa distribution
and to modify it for your needs.

The mhonarc resource file is named mhonarc-ressources. You may locate this file
either in

1. /usr/local/sympa-stable/expl/mylist/mhonarc-ressources in order
to create a specific archive look for a particular list

2. or /usr/local/sympa-stable/etc/mhonarc-ressources

9.5 Archiving daemon

archived.pl converts messages from Sympa’s spools and calls mhonarc to create
html versions (whose location is defined by the ”arc path” WWSympa parameter).
You should probably install these archives outside the Sympa home dir (Sympa’s initial
choice for storing mail archives : /usr/local/sympa-stable/expl/mylist). Note
that the html archive contains a text version of each message and is totally separate
from Sympa’s main archive.

1. create a directory according to the WWSympa ”arc path” parameter (must be
owned by sympa, does not have to be in Apache space unless your server uses
chroot)

2. for each list, if you need a web archive, create a new web archive paragraph in
the list configuration. Example :

web_archive
access public|private|owner|listmaster|closed
quota 10000

If web archive is defined for a list, every message distributed by this list is co-
pied to /usr/local/sympa-stable/spool/outgoing/. (No need to create
nonexistent subscribers to receive copies of messages). In this example disk
quota (expressed in Kbytes) for the archive is limited to 10 Mo.

3. start archived.pl. Sympa and Apache

4. check WWSympa logs, or alternatively, start archived.pl in debug mode (-d).

5. If you change mhonarc resources and wish to rebuild the entire archive
using the new look defined for mhonarc, simply create an empty file named
”.rebuild.mylist@myhost” in /usr/local/sympa-stable/spool/outgoing,
and make sure that the owner of this file is Sympa.

http://www.oac.uci.edu/indiv/ehood/mhonarc.html

94 CHAPITRE 9. WWSYMPA, SYMPA’S WEB INTERFACE

example : su sympa -c "touch /usr/local/sympa-stable/spool/outgoing/.rebuild.sympa-fr@cru.fr"

You can also rebuild web archives from within the admin page of the list.
Furthermore, if you want to get list’s archives, you can do it via the
List-admin menu-> Archive Management

9.6 Database configuration

WWSympa needs an RDBMS (Relational Database Management System) in order to
run. All database access is performed via the Sympa API. Sympa currently interfaces
with MySQL, SQLite, PostgreSQL, Oracle and Sybase.

A database is needed to store user passwords and preferences. The database structure
is documented in the Sympa documentation ; scripts for creating it are also provided
with the Sympa distribution (in script).

User information (password and preferences) are stored in the «User» table. User pass-
words stored in the database are encrypted using reversible RC4 encryption controlled
with the cookie parameter, since WWSympa might need to remind users of their pass-
words. The security of WWSympa rests on the security of your database.

9.7 Logging in as listmaster

Once Sympa is running you should log in on the web interface as a privileged user
(listmaster) to explore the admin interface, create mailing lists.

Multiple email addresses can be declared as listmaster via the sympa.conf (or
robot.conf) listmaster configuration parameter (see 7, page 47). Note that list-
masters on the main robot (declared in sympa.conf) also have listmaster privileges on
the virtual hosts but they will not receive the various mail notifications (list creation,
warnings,...) regarding these virtual hosts.

The listmasters should log in with their canonical email address as an identifier (not
listmaster@my.host). The associated password is not declared in sympa.conf ; it will
be allocated by Sympa when first hitting the Send me a password button on the web
interface. As for any user, the password can then be modified via the Preferenced
menu.

Note that you must start the sympa.pl process with the web interface ; it is in respon-
sible for delivering mail messages including password reminders.

http://www.mysql.net/
http://sqlite.org/
http://www.postgresql.pyrenet.fr/
http://www.oracle.com/database/
http://www.sybase.com/index_sybase.html

Chapitre 10

Sympa RSS channel

This service is provided by WWSympa (Sympa’s web interface). Here is the root of
WWSympa’s rss channel :

(Default value: http ://<host>/wws/rss)
Example: https ://my.server/wws/rss

The access control of RSS queries proceed on the same way as WWSympa actions
referred to. Sympa provides the following RSS features :
– the latest created lists on a robot (latest lists) ;
– the most active lists on a robot(active lists) ;
– the latest messages of a list (active arc) ;
– the latest shared documents of a list (latest d read) ;

10.1 latest lists

This provides the latest created lists.

Example: http ://my.server/wws/rss/latest lists ?for=3&count=6
This provides the 6 latest created lists for the last 3 days.

Example: http ://my.server/wws/rss/latest lists/computing ?count=6
This provides the 6 latest created lists with topic “computing”.

Parameters :

95

96 CHAPITRE 10. SYMPA RSS CHANNEL

– for : period of interest (expressed in days). This is a CGI parameter. It is optional
but one of the two parameters “for” or “count” is required.

– count : maximum number of expected records. This is a CGI parameter. It is optio-
nal but one of the two parameters “for” or “count” is required.

– topic : the topic is indicated in the path info (see example below with topic compu-
ting). This parameter is optional.

10.2 active lists

This provides the most active lists, based on the number of distributed messages (num-
ber of received messages).

Example: http ://my.server/wws/rss/active lists ?for=3&count=6
This provides the 6 most active lists for the last 3 days.

Example: http ://my.server/wws/rss/active lists/computing ?count=6
This provides the 6 most active lists with topic “computing”.

Parameters :
– for : period of interest (expressed in days). This is a CGI parameter. It is optional

but one of the two parameters “for” or “count” is required.
– count : maximum number of expected records. This is a CGI parameter. It is optio-

nal but one of the two parameters “for” or “count” is required.
– topic : the topic is indicated in the path info (see example below with topic compu-

ting). This parameter is optional.

10.3 latest arc

This provides the latest messages of a list.

Example: http ://my.server/wws/rss/latest arc/mylist ?for=3&count=6
This provides the 6 latest messages received on the mylistlist for the last 3 days.

Parameters :
– list : the list is indicated in the path info. This parameter is mandatory.
– for : period of interest (expressed in days). This is a CGI parameter. It is optional

but one of the two parameters “for” or “count” is required.
– count : maximum number of expected records. This is a CGI parameter. It is optio-

nal but one of the two parameters “for” or “count” is required.

10.4. LATEST D READ 97

10.4 latest d read

This provides the latest updated and uploaded shared documents of a list.

Example: http ://my.server/wws/rss/latest d read/mylist ?for=3&count=6
This provides the 6 latest documents uploaded or updated on the mylistlist for the last
3 days.

Parameters :
– list : the list is indicated in the path info. This parameter is mandatory.
– for : period of interest (expressed in days). This is a CGI parameter. It is optional

but one of the two parameters “for” or “count” is required.
– count : maximum number of expected records. This is a CGI parameter. It is optio-

nal but one of the two parameters “for” or “count” is required.

98 CHAPITRE 10. SYMPA RSS CHANNEL

Chapitre 11

Sympa SOAP server

11.1 Introduction

SOAP is one protocol (generally over HTTP) that can be used to provide web services.
Sympa SOAP server allows to access a Sympa service from within another program,
written in any programming language and on any computer. SOAP encapsulates pro-
cedure calls, input parameters and resulting data in an XML data structure. The Sympa
SOAP server’s API is published in a WSDL document, retreived via Sympa’s web
interface.

The SOAP server provides a limited set of high level functions including login,
which, lists,subscribe,signoff. Other functions might be implemented in the fu-
ture.

The SOAP server uses SOAP : :Lite Perl library. The server is running as a daemon
(thanks to FastCGI), receiving the client SOAP requests via a web server (Apache for
example).

11.2 Web server setup

You NEED TO install FastCGI for the SOAP server to work properly because it will
run as a daemon.

Here is a sample piece of your Apache httpd.conf with a SOAP server configured :

FastCgiServer /usr/local/sympa-stable/bin/sympa_soap_server.fcgi -processes 1
ScriptAlias /sympasoap /usr/local/sympa-stable/bin/sympa_soap_server.fcgi

99

http://www.w3.org/2002/ws/
http://www.soaplite.com/

100 CHAPITRE 11. SYMPA SOAP SERVER

<Location /sympasoap>
SetHandler fastcgi-script

</Location>

11.3 Sympa setup

The only parameters that you need to set in sympa.conf/robot.conf files is the
soap url parameter that defines the URL of the SOAP service corresponding to the
ScriptAlias you’ve previously setup in Apache config.

This parameter is used to publish the SOAP service URL in the WSDL file (defining
the API) but also for the SOAP server to deduce what Virtual Host is concerned by the
current SOAP request (a single SOAP server will serve all Sympa virtual hosts).

11.4 The WSDL service description

Here is what the WSDL file looks like before it is parsed by WWSympa :

<?xml version="1.0"?>
<definitions name="Sympa"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="[% conf.wwsympa_url %]/wsdl"
xmlns:tns="[% conf.wwsympa_url %]/wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsdl="[% conf.soap_url %]/wsdl">

<!-- types part -->

<types>
<schema targetNamespace="[% conf.wwsympa_url %]/wsdl"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="ArrayOfLists">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="tns:listType[]"/>
</restriction>

11.4. THE WSDL SERVICE DESCRIPTION 101

</complexContent>
</complexType>

<complexType name="ArrayOfString">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="string[]"/>
</restriction>
</complexContent>
</complexType>

<complexType name="listType">
<all>

<element name="listAddress" minOccurs="1" type="string"/>
<element name="homepage" minOccurs="0" type="string"/>
<element name="isSubscriber" minOccurs="0" type="boolean"/>
<element name="isOwner" minOccurs="0" type="boolean"/>
<element name="isEditor" minOccurs="0" type="boolean"/>
<element name="subject" minOccurs="0" type="string"/>

</all>
</complexType>
</schema>
</types>

<!-- message part -->

<message name="infoRequest">
<part name="listName" type="xsd:string"/>

</message>

<message name="infoResponse">
<part name="return" type="tns:listType"/>
</message>

<message name="complexWhichRequest">
</message>

<message name="complexWhichResponse">
<part name="return" type="tns:ArrayOfLists"/>
</message>

<message name="whichRequest">
</message>

<message name="whichResponse">
<part name="return" type="tns:ArrayOfString"/>
</message>

<message name="amIRequest">

102 CHAPITRE 11. SYMPA SOAP SERVER

<part name="list" type="xsd:string"/>
<part name="function" type="xsd:string"/>
<part name="user" type="xsd:string"/>
</message>

<message name="amIResponse">
<part name="return" type="xsd:boolean"/>
</message>

<message name="reviewRequest">
<part name="list" type="xsd:string"/>
</message>

<message name="reviewResponse">
<part name="return" type="tns:ArrayOfString"/>
</message>

<message name="signoffRequest">
<part name="list" type="xsd:string"/>
<part name="email" type="xsd:string" xsd:minOccurs="0"/>
</message>

<message name="signoffResponse">
<part name="return" type="xsd:boolean"/>
</message>

<message name="subscribeRequest">
<part name="list" type="xsd:string"/>
<part name="gecos" type="xsd:string" xsd:minOccurs="0"/>
</message>

<message name="subscribeResponse">
<part name="return" type="xsd:boolean"/>
</message>

<message name="loginRequest">
<part name="email" type="xsd:string"/>
<part name="password" type="xsd:string"/>
</message>

<message name="loginResponse">
<part name="return" type="xsd:string"/>
</message>

<message name="authenticateAndRunRequest">
<part name="email" type="xsd:string"/>
<part name="cookie" type="xsd:string"/>
<part name="service" type="xsd:string"/>
<part name="parameters" type="tns:ArrayOfString" xsd:minOccurs="0"/>
</message>

11.4. THE WSDL SERVICE DESCRIPTION 103

<message name="authenticateAndRunResponse">
<part name="return" type="tns:ArrayOfString" xsd:minOccurs="0"/>
</message>

<message name="casLoginRequest">
<part name="proxyTicket" type="xsd:string"/>
</message>

<message name="casLoginResponse">
<part name="return" type="xsd:string"/>
</message>

<message name="listsRequest">
<part name="topic" type="xsd:string" xsd:minOccurs="0"/>
<part name="subtopic" type="xsd:string" xsd:minOccurs="0"/>
</message>

<message name="listsResponse">
<part name="listInfo" type="xsd:string"/>
</message>

<message name="complexListsRequest">
</message>

<message name="complexListsResponse">
<part name="return" type="tns:ArrayOfLists"/>
</message>

<message name="checkCookieRequest">
</message>

<message name="checkCookieResponse">
<part name="email" type="xsd:string"/>
</message>

<!-- portType part -->

<portType name="SympaPort">
<operation name="info">
<input message="tns:infoRequest" />
<output message="tns:infoResponse" />
</operation>
<operation name="complexWhich">
<input message="tns:complexWhichRequest" />
<output message="tns:complexWhichResponse" />
</operation>
<operation name="which">
<input message="tns:whichRequest" />

104 CHAPITRE 11. SYMPA SOAP SERVER

<output message="tns:whichResponse" />
</operation>
<operation name="amI">
<input message="tns:amIRequest" />
<output message="tns:amIResponse" />
</operation>
<operation name="review">
<input message="tns:reviewRequest" />
<output message="tns:reviewResponse" />
</operation>
<operation name="subscribe">
<input message="tns:subscribeRequest" />
<output message="tns:subscribeResponse" />
</operation>
<operation name="signoff">
<input message="tns:signoffRequest" />
<output message="tns:signoffResponse" />
</operation>
<operation name="login">
<input message="tns:loginRequest" />
<output message="tns:loginResponse" />
</operation>
<operation name="casLogin">
<input message="tns:casLoginRequest" />
<output message="tns:casLoginResponse" />
</operation>
<operation name="authenticateAndRun">
<input message="tns:authenticateAndRunRequest" />
<output message="tns:authenticateAndRunResponse" />
</operation>
<operation name="lists">
<input message="tns:listsRequest" />
<output message="tns:listsResponse" />
</operation>
<operation name="complexLists">
<input message="tns:complexListsRequest" />
<output message="tns:complexListsResponse" />
</operation>
<operation name="checkCookie">
<input message="tns:checkCookieRequest" />
<output message="tns:checkCookieResponse" />
</operation>
</portType>

<!-- Binding part -->

<binding name="SOAP" type="tns:SympaPort">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="info">

11.4. THE WSDL SERVICE DESCRIPTION 105

<soap:operation soapAction="urn:sympasoap#info"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="complexWhich">
<soap:operation soapAction="urn:sympasoap#complexWhich"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="which">
<soap:operation soapAction="urn:sympasoap#which"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="amI">
<soap:operation soapAction="urn:sympasoap#amI"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

106 CHAPITRE 11. SYMPA SOAP SERVER

</operation>
<operation name="review">
<soap:operation soapAction="urn:sympasoap#review"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="subscribe">
<soap:operation soapAction="urn:sympasoap#subscribe"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="signoff">
<soap:operation soapAction="urn:sympasoap#signoff"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="login">
<soap:operation soapAction="urn:sympasoap#login"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"

11.4. THE WSDL SERVICE DESCRIPTION 107

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="casLogin">
<soap:operation soapAction="urn:sympasoap#casLogin"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="authenticateAndRun">
<soap:operation soapAction="urn:sympasoap#authenticateAndRun"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="lists">
<soap:operation soapAction="urn:sympasoap#lists"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="complexLists">
<soap:operation soapAction="urn:sympasoap#complexLists"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>

108 CHAPITRE 11. SYMPA SOAP SERVER

<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="checkCookie">
<soap:operation soapAction="urn:sympasoap#checkCookie"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
</binding>

<!-- service part -->

<service name="SympaSOAP">
<port name="SympaPort" binding="tns:SOAP">
<soap:address location="[% conf.soap_url %]"/>
</port>
</service>

</definitions>

11.5 Client-side programming

Sympa is distributed with 2 sample clients written in Perl and in PHP. Sympa SOAP
server has also been successfully tested with a UPortal Chanel as a Java client
(using Axis). The sample PHP SOAP client has been installed on our demo server :
http ://demo.sympa.org/sampleClient.php.

Depending on your programming language and the SOAP library you’re using, you
will either directly contact the SOAP service (as with Perl SOAP : :Lite library) or first
load the WSDL description of the service (as with PHP nusoap or Java Axis). Axis is
able to create a stub from the WSDL document.

http://demo.sympa.org/sampleClient.php

11.5. CLIENT-SIDE PROGRAMMING 109

The WSDL document describing the service should be fetch through WWSympa’s
dedicated URL : http ://your.server/sympa/wsdl.

Note : the login() function maintains a login session using HTTP cookies. If you are
not able to maintain this session by analysing and sending appropriate cookies under
SOAP, then you should use the authenticateAndRun() function that does not require
cookies to authenticate.

11.5.1 Writting a Java client with Axis

First, download jakarta-axis (http ://ws.apache.org/axis/)

You must add the libraries provided with jakarta axis (v ¿1.1) to you CLASSPATH.
These libraries are :

– axis.jar
– saaj.jar
– commons-discovery.jar
– commons-logging.jar
– xercesImpl.jar
– jaxrpc.jar
– xml-apis.jar
– jaas.jar
– wsdl4j.jar
– soap.jar

Next, you have to generate client java classes files from the sympa WSDL url. Use the
following command :

java org.apache.axis.wsdl.WSDL2Java -av WSDL URL

For example :

java org.apache.axis.wsdl.WSDL2Java -av http://demo.sympa.org/sympa/wsdl

Exemple of screen output during generation of java files :

Parsing XML file: http://demo.sympa.org/sympa/wsdl
Generating org/sympa/demo/sympa/msdl/ListType.java
Generating org/sympa/demo/sympa/msdl/SympaPort.java

110 CHAPITRE 11. SYMPA SOAP SERVER

Generating org/sympa/demo/sympa/msdl/SOAPStub.java
Generating org/sympa/demo/sympa/msdl/SympaSOAP.java
Generating org/sympa/demo/sympa/msdl/SympaSOAPLocator.java

If you need more information or more generated classes (to have the server-side
classes or junit testcase classes for example), you can get a list of switches :

java org.apache.axis.wsdl.WSDL2Java -h

The reference page is :
http ://ws.apache.org/axis/java/reference.html

Take care of Test classes generated by axis, there are not useable as is. You have to stay
connected between each test. To use junit testcases, before each soap operation tested,
you must call the authenticated connexion to sympa instance.

Here is a simple Java code that invokes the generated stub to perform a casLogin() and
a which() on the remote Sympa SOAP server :

SympaSOAP loc = new SympaSOAPLocator();
((SympaSOAPLocator)loc).setMaintainSession(true);
SympaPort tmp = loc.getSympaPort();
String _value = tmp.casLogin(_ticket);
String _cookie = tmp.checkCookie();
String[] _abonnements = tmp.which();

Chapitre 12

Authentication

Sympa needs to authenticate users (subscribers, owners, moderators, listmaster) on both
its mail and web interface to then apply appropriate privileges (authorization process)
to subsequent requested actions. Sympa is able to cope with multiple authentication
means on the client side and when using user+password it can validate these credentials
against LDAP authentication backends.

When contacted on the mail interface Sympa has 3 authentication levels. Lower level
is to trust the From: SMTP header field. A higher level of authentication will require
that the user confirms his/her message. The strongest supported authentication method
is S/MIME (note that Sympa also deals with S/MIME encrypted messages).

On the Sympa web interface (WWSympa) the user can authenticate in 4 different ways
(if appropriate setup has been done on Sympa serveur). Default authentication mean
is via the user’s email address and a password managed by Sympa itself. If an LDAP
authentication backend (or multiple) has been defined, then the user can authentication
with his/her LDAP uid and password. Sympa is also able to delegate the authentication
job to a web Single SignOn system ; currently CAS (the Yale University system) or
a generic SSO setup, adapted to SSO products providing an Apache module. When
contacted via HTTPS, Sympa can make use of X509 client certificates to authenticate
users.

The authorization process in Sympa (authorization scenarios) refers to authentication
methods. The same authorization scenarios are used for both mail and web accesss ;
therefore some authentication methods are considered as equivalent : mail confirmation
(on the mail interface) is equivalent to password authentication (on the web interface) ;
S/MIME authentication is equivalent to HTTPS with client certificate authentication.
Each rule in authorization scenarios requires an authentication method (smtp,md5 or
smime) ; if the required authentication method was not used, a higher authentication
mode can be requested.

111

http://www.yale.edu/tp/auth/

112 CHAPITRE 12. AUTHENTICATION

12.1 S/MIME and HTTPS authentication

Chapter 26.2 (page 222) deals with Sympa and S/MIME signature. Sympa uses
OpenSSL library to work on S/MIME messages, you need to configure some related
Sympa parameters : 26.4.2 (page 223).

Sympa HTTPS authentication is based on Apache+mod SSL that provide the requi-
red authentication information via CGI environment variables. You will need to edit
Apache configuration to allow HTTPS access and require X509 client certificate. Here
is a sample Apache configuration

SSLEngine on
SSLVerifyClient optional
SSLVerifyDepth 10
...
<Location /sympa>

SSLOptions +StdEnvVars
SetHandler fastcgi-script

</Location>

12.2 Authentication with email address, uid or alter-
nate email address

Sympa stores the data relative to the subscribers in a DataBase. Among these data :
password, email exploited during the Web authentication. The module of LDAP au-
thentication allows to use Sympa in an intranet without duplicating user passwords.

This way users can indifferently authenticate with their ldap uid, their alternate email
or their canonic email stored in the LDAP directory.

Sympa gets the canonic email in the LDAP directory with the ldap uid or the alter-
nate email. Sympa will first attempt an anonymous bind to the directory to get the
user’s DN, then Sympa will bind with the DN and the user’s ldap password in or-
der to perform an efficient authentication. This last bind will work only if the good
ldap password is provided. Indeed the value returned by the bind(DN,ldap password)
is tested.

Example : a person is described by
Dn:cn=Fabrice Rafart,
ou=Siege ,
o=MaSociete ,
c=FR Objectclass:

12.3. GENERIC SSO AUTHENTICATION 113

person Cn: Fabrice Rafart
Title: Network Responsible
O: Siege
Or: Data processing
Telephonenumber: 01-00-00-00-00
Facsimiletelephonenumber:01-00-00-00-00
L:Paris
Country: France

uid: frafart
mail: Fabrice.Rafart@MaSociete.fr

alternate_email: frafart@MaSociete.fr
alternate:rafart@MaSociete.fr

So Fabrice Rafart can be authenticated with : frafart, Fabrice.Rafart@MaSociete.fr,
frafart@MaSociete.fr,Rafart@MaSociete.fr. After this operation, the address in the
field FROM will be the Canonic email, in this case Fabrice.Rafart@MaSociete.fr. That
means that Sympa will get this email and use it during all the session until you clearly
ask Sympa to change your email address via the two pages : which and pref.

12.3 Generic SSO authentication

The authentication method has first been introduced to allow interraction with Shibbo-
leth, Internet2’s inter-institutional authentication system. But it should be usable with
any SSO system that provides an Apache authentication module being able to protect
a specified URL on the site (not the whole site). Here is a sample httpd.conf that shib-
protects the associated Sympa URL :

...
<Location /sympa/sso_login/inqueue>
AuthType shibboleth
require affiliation ~ ^member@.+

</Location>
...

Sympa will get user attributes via environment variables. In the most simple case the
SSO will provide the user email address. If not, Sympa can be configured to verify
an email address provided by the user hiself or to look for the user email address in a
LDAP directory (the search filter will make use of user information inherited from the
SSO Apache module).

To plug a new SSO server in your Sympa server you should add a generic sso para-
graph (describing the SSO service) in your auth.conf configuration file (See 12.5.3,
page 119). Once this paragraph has been added, the SSO service name will be automa-
tically added to the web login menu.

Apart from the user email address, the SSO can provide other user attributes that Sympa
will store in the user table DB table (for persistancy) and make them available in the

http://shibboleth.internet2.edu/
http://shibboleth.internet2.edu/

114 CHAPITRE 12. AUTHENTICATION

[user attributes] structure that you can use within authorization scenarios (see 13.1,
page 126) or in web templates via the [% user.attributes %] structure.

12.4 CAS-based authentication

CAS is Yale university SSO software. Sympa can use CAS authentication service.

The listmaster should define at least one or more CAS servers (cas paragraph) in
auth.conf. If non blocking redirection parameter was set for a CAS server then
Sympa will try a transparent login on this server when the user accesses the web inter-
face. If one CAS server redirect the user to Sympa with a valid ticket Sympa receives a
user ID from the CAS server. It then connects to the related LDAP directory to get the
user email address. If no CAS server returns a valid user ID, Sympa will let the user
either select a CAS server to login or perform a Sympa login.

12.5 auth.conf

The /usr/local/sympa-stable/etc/auth.conf configuration file contains nume-
rous parameters which are read on start-up of Sympa. If you change this file, do not
forget that you will need to restart wwsympa.fcgi afterwards.

The /usr/local/sympa-stable/etc/auth.conf is organised in paragraphs. Each
paragraph describes an authentication service with all required parameters to perform
an authentication using this service. Current version of Sympa can perform authentica-
tion through LDAP directories, using an external Single Sign-On Service (like CAS or
Shibboleth), or using internal user table.

The login page contains 2 forms : the login form and the SSO. When users hit
the login form, each ldap or user table authentication paragraph is applied unless
email adress input from form match the negative regexp or do not match regexp.
negative regexp and regexp can be defined for earch ldap or user table authen-
tication service so administrator can block some authentication methode for class of
users.

The segond form in login page contain the list of CAS server so user can choose expli-
citely his CAS service.

Each paragraph start with one of the keyword cas, ldap or user table

The /usr/local/sympa-stable/etc/auth.conf file contains directives in the fol-
lowing format :

12.5. AUTH.CONF 115

paragraphs
keyword value
paragraphs
keyword value

Comments start with the # character at the beginning of a line.

Empty lines are also considered as comments and are ignored at the beginning. After
the first paragraph they are considered as paragraphs separators. There should only be
one directive per line, but their order in the paragraph is of no importance.

Example :

#Configuration file auth.conf for the LDAP authentification
#Description of parameters for each directory

cas
base_url https://sso-cas.cru.fr
non_blocking_redirection on
auth_service_name cas-cru
ldap_host ldap.cru.fr:389

ldap_get_email_by_uid_filter (uid=[uid])
ldap_timeout 7
ldap_suffix dc=cru,dc=fr
ldap_scope sub
ldap_email_attribute mail

The URL corresponding to the service_id should be protected by the SSO (Shibboleth in the exampl)
The URL would look like http://yourhost.yourdomain/sympa/sso_login/inqueue in the following example
generic_sso

service_name InQueue Federation
service_id inqueue
http_header_prefix HTTP_SHIB
email_http_header HTTP_SHIB_EMAIL_ADDRESS

The email address is not provided by the user home institution
generic_sso

service_name Shibboleth Federation
service_id myfederation
http_header_prefix HTTP_SHIB
netid_http_header HTTP_SHIB_EMAIL_ADDRESS

internal_email_by_netid 1
force_email_verify 1

ldap
regexp univ-rennes1\.fr
host ldap.univ-rennes1.fr:389

116 CHAPITRE 12. AUTHENTICATION

timeout 30
suffix dc=univ-rennes1,dc=fr
get_dn_by_uid_filter (uid=[sender])
get_dn_by_email_filter (|(mail=[sender])(mailalternateaddress=[sender]))
email_attribute mail
alternative_email_attribute mailalternateaddress,ur1mail
scope sub
use_ssl 1
ssl_version sslv3
ssl_ciphers MEDIUM:HIGH

ldap

host ldap.univ-nancy2.fr:392,ldap1.univ-nancy2.fr:392,ldap2.univ-nancy2.fr:392
timeout 20
bind_dn cn=sympa,ou=people,dc=cru,dc=fr
bind_password sympaPASSWD
suffix dc=univ-nancy2,dc=fr
get_dn_by_uid_filter (uid=[sender])
get_dn_by_email_filter (|(mail=[sender])(n2atraliasmail=[sender]))
alternative_email_attribute n2atrmaildrop
email_attribute mail
scope sub

authentication_info_url http://sso.univ-nancy2.fr/

user_table
negative_regexp ((univ-rennes1)|(univ-nancy2))\.fr

12.5.1 user table paragraph

The user table paragraph is related to sympa internal authentication by email and pass-
word. It is the simplest one the only parameters are regexp or negative regexp
which are perl regular expressions applied on a provided email address to select or
block this authentication method for a subset of email addresses.

12.5.2 ldap paragraph

– regexp and negative regexp Same as in user table paragraph : if a provided email
address (does not apply to an uid), then the regular expression will be applied to find
out if this LDAP directory can be used to authenticate a subset of users.

– host

This keyword is mandatory. It is the domain name used in order to bind to the
directory and then to extract informations. You must mention the port number after

12.5. AUTH.CONF 117

the server name. Server replication is supported by listing several servers separated
by commas.
Example :

host ldap.univ-rennes1.fr:389
host ldap0.university.com:389,ldap1.university.com:389,ldap2.university.com:389

– timeout

It corresponds to the timelimit in the Search fonction. A timelimit that restricts the
maximum time (in seconds) allowed for a search. A value of 0 (the default), means
that no timelimit will be requested.

– suffix

The root of the DIT (Directory Information Tree). The DN that is the base object
entry relative to which the search is to be performed.
Example: dc=university,dc=fr

– bind dn

If anonymous bind is not allowed on the LDAP server, a DN and password can be
used.

– bind password

This password is used, combined with the bind dn above.
– get dn by uid filter

Defines the search filter corresponding to the ldap uid. (RFC 2254 compliant). If you
want to apply the filter on the user, use the variable ’ [sender] ’. It will work with
every type of authentication (uid, alternate email..).
Example :

(Login = [sender])
(|(ID = [sender])(UID = [sender]))

– get dn by email filter

Defines the search filter corresponding to the email addresses (canonic and alter-
native).(RFC 2254 compliant). If you want to apply the filter on the user, use the
variable ’ [sender] ’. It will work with every type of authentication (uid, alter-
nate email..).
Example : a person is described by

Dn:cn=Fabrice Rafart,
ou=Siege ,
o=MaSociete ,
c=FR Objectclass:

118 CHAPITRE 12. AUTHENTICATION

person Cn: Fabrice Rafart
Title: Network Responsible
O: Siege
Or: Data processing
Telephonenumber: 01-00-00-00-00
Facsimiletelephonenumber:01-00-00-00-00
L:Paris
Country: France

uid: frafart
mail: Fabrice.Rafart@MaSociete.fr

alternate_email: frafart@MaSociete.fr
alternate:rafart@MaSociete.fr

The filters can be :

(mail = [sender])
(| (mail = [sender])(alternate_email = [sender]))
(| (mail = [sender])(alternate_email = [sender])(alternate = [sender]))

– email attribute

The name of the attribute for the canonic email in your directory : for instance
mail, canonic email, canonic address ... In the previous example the canonic email
is ’mail’.

– alternative email attribute

The name of the attribute for the alternate email in your directory : for instance
alternate email, mailalternateaddress, ... You make a list of these attributes separated
by commas.
With this list Sympa creates a cookie which contains various information : the user
is authenticated via Ldap or not, his alternate email. To store the alternate email is
interesting when you want to canonify your preferences and subscriptions. That is
to say you want to use a unique address in User table and Subscriber table which is
the canonic email.

– scope

(Default value: sub) By default the search is performed on the whole tree below the
specified base object. This may be changed by specifying a scope :
– base

Search only the base object.
– one

Search the entries immediately below the base object.
– sub

Search the whole tree below the base object. This is the default.
– authentication info url

12.5. AUTH.CONF 119

Defines the URL of a document describing LDAP password management. When
hitting Sympa’s Send me a password button, LDAP users will be redirected to this
URL.

– use ssl
If set to 1, connection to the LDAP server will use SSL (LDAPS).

– ssl version
This defines the version of the SSL/TLS protocol to use. Defaults of Net : :LDAPS
to sslv2/3, other possible values are sslv2, sslv3, and tlsv1.

– ssl ciphers
Specify which subset of cipher suites are permissible for this connection, using the
standard OpenSSL string format. The default value of Net : :LDAPS for ciphers is
ALL, which permits all ciphers, even those that don’t encrypt !

12.5.3 generic sso paragraph

– service name
This is the SSO service name that will be proposed to the user in the login banner
menu.

– service id
This service ID is used as a parameter by sympa to refer to the SSO service (instead
of the service name).
A corresponding URL on the local web server should be protec-
ted by the SSO system ; this URL would look like http ://you-
rhost.yourdomain/sympa/sso login/inqueue if the service id is inqueue.

– http header prefix
Sympa gets user attributes from environment variables comming from the web ser-
ver. These variables are then stored in the user table DB table for later use in authori-
zation scenarios (in structure). Only environment variables starting with the defined
prefix will kept.

– email http header
This parameter defines the environment variable that will contain the authenticated
user’s email address.

The following parameters define how Sympa can verify the user email address, either
provided by the SSO or by the user himself :

– internal email by netid
If set to 1 this parameter makes Sympa use its netidmap table to associate NetIDs to
user email address.

– netid http header
This parameter defines the environment variable that will contain the user’s identifier.
This netid will then be associated with an email address either provided by the user.

– force email verify
If set to 1 this parameter makes Sympa verify the user’s email address. If the email
address was not provided by the authentication module, then the user is requested to
provide a valid email address.

120 CHAPITRE 12. AUTHENTICATION

The following parameters define how Sympa can retrieve the user email address ; these
are only useful if the email http header entry was not defined :

– ldap host
The LDAP host Sympa will connect to fetch user email. The ldap host include the
port number and it may be a comma separated list of redondant host.

– ldap bind dn
The DN used to bind to this server. Anonymous bind is used if this parameter is not
defined.

– ldap bind password
The password used unless anonymous bind is used.

– ldap suffix
The LDAP suffix used when seraching user email

– ldap scope
The scope used when seraching user email, possible values are sub, base, and one.

– ldap get email by uid filter
The filter to perform the email search. It can refer to any environment variables
inherited from the SSO module, as shown below. Example :

ldap_get_email_by_uid_filter (mail=[SSL_CLIENT_S_DN_Email])

– ldap email attribute
The attribut name to be used as user canonical email. In the current version of sympa
only the first value returned by the LDAP server is used.

– ldap timeout
The time out for the search.

– ldap use ssl
If set to 1, connection to the LDAP server will use SSL (LDAPS).

– ldap ssl version
This defines the version of the SSL/TLS protocol to use. Defaults of Net : :LDAPS
to sslv2/3, other possible values are sslv2, sslv3, and tlsv1.

– ldap ssl ciphers
Specify which subset of cipher suites are permissible for this connection, using the
OpenSSL string format. The default value of Net : :LDAPS for ciphers is ALL, which
permits all ciphers, even those that don’t encrypt !

12.5.4 cas paragraph

– auth service name
The friendly user service name as shown by Sympa in the login page.

– host (OBSOLETE)
This parameter has been replaced by base url parameter

– base url

The base URL of the CAS server.
– non blocking redirection

This parameter concern only the first access to Sympa services by a user, it activate or

12.5. AUTH.CONF 121

not the non blocking redirection to the related cas server to check automatically if the
user as been previously authenticated with this CAS server. Possible values are on
off, default is on. The redirection to CAS is use with the cgi parameter gateway=1
that specify to CAS server to always redirect the user to the origine URL but just
check if the user is logged. If active, the SSO service is effective and transparent, but
in case the CAS server is out of order the access to Sympa services is impossible.

– login uri (OBSOLETE)
This parameter has been replaced by login path parameter.

– login path (OPTIONAL)
The login service path

– check uri (OBSOLETE)
This parameter has been replaced by service validate path parameter

– service validate path (OPTIONAL)
The ticket validation service path

– logout uri (OBSOLETE)
This parameter has been replaced by logout path parameter

– logout path (OPTIONAL)
The logout service path

– proxy path (OPTIONAL)
The proxy service path, used by Sympa SOAP server only.

– proxy validate path (OPTIONAL)
The proxy validate service path, used by Sympa SOAP server only.

– ldap host
The LDAP host Sympa will connect to fetch user email when user uid is return
by CAS service. The ldap host include the port number and it may be a comma
separated list of redondant host.

– ldap bind dn
The DN used to bind to this server. Anonymous bind is used if this parameter is not
defined.

– ldap bind password
The password used unless anonymous bind is used.

– ldap suffix
The LDAP suffix used when seraching user email

– ldap scope
The scope used when seraching user email, possible values are sub, base, and one.

– ldap get email by uid filter
The filter to perform the email search.

– ldap email attribute
The attribut name to be use as user canonical email. In the current version of sympa
only the first value returned by the LDAP server is used.

– ldap timeout
The time out for the search.

– ldap use ssl
If set to 1, connection to the LDAP server will use SSL (LDAPS).

– ldap ssl version
This defines the version of the SSL/TLS protocol to use. Defaults of Net : :LDAPS
to sslv2/3, other possible values are sslv2, sslv3, and tlsv1.

– ldap ssl ciphers
Specify which subset of cipher suites are permissible for this connection, using the
OpenSSL string format. The default value of Net : :LDAPS for ciphers is ALL, which

122 CHAPITRE 12. AUTHENTICATION

permits all ciphers, even those that don’t encrypt !

12.6 Sharing WWSympa authentication with other ap-
plications

If your are not using a web Single SignOn system you might want to make other web
applications collaborate with Sympa, and share the same authentication system. Sympa
uses HTTP cookies to carry users’ auth information from page to page. This cookie car-
ries no information concerning privileges. To make your application work with Sympa,
you have two possibilities :

– Delegating authentication operations to WWSympa
If you want to avoid spending a lot of time programming a CGI to do Login, Logout
and Remindpassword, you can copy WWSympa’s login page to your application, and
then make use of the cookie information within your application. The cookie format
is :
sympauser=<user_email>:<checksum>where <user email> is the user’s complete e-mail address, and <checksum> are the 8
last bytes of the a MD5 checksum of the <user email>+Sympa cookie configuration
parameter. Your application needs to know what the cookie parameter is, so it can
check the HTTP cookie validity ; this is a secret shared between WWSympa and your
application. WWSympa’s loginrequest page can be called to return to the referer URL
when an action is performed. Here is a sample HTML anchor :
Login page
You can also have your own HTML page submitting data to wwsympa.fcgi CGI. If
you’re doing so, you can set the referer variable to another URI. You can also set
the failure referer to make WWSympa redirect the client to a different URI if
login fails.

– Using WWSympa’s HTTP cookie format within your auth module
To cooperate with WWSympa, you simply need to adopt its HTTP cookie format
and share the secret it uses to generate MD5 checksums, i.e. the cookie configura-
tion parameter. In this way, WWSympa will accept users authenticated through your
application without further authentication.

12.7 Provide a Sympa login form in another applica-
tion

You can easily trigger a Sympa login from within another web page. The login form
should look like this :

<FORM ACTION="http://listes.cru.fr/sympa" method="post">
<input type="hidden" name="previous_action" value="arc" />
Accès web archives of list
<select name="previous_list">

12.7. PROVIDE A SYMPA LOGIN FORM IN ANOTHER APPLICATION 123

<option value="sympa-users" >sympa-users</option>
</select>

<input type="hidden" name="action" value="login" />
<label for="email">email address :
<input type="text" name="email" id="email" size="18" value="" /></label>

<label for="passwd" >password :
<input type="password" name="passwd" id="passwd" size="8" /></label>

<input class="MainMenuLinks" type="submit" name="action_login" value="Login and access web archives" />

</FORM>

The example above does not only perform the login action but also redirects the
user to another sympa page, a list web archives here. The previous action and
previous list variable define the action that will be performed after the login is
done.

124 CHAPITRE 12. AUTHENTICATION

Chapitre 13

Authorization scenarios

List parameters controlling the behavior of commands are linked to different au-
thorization scenarios. For example : the send private parameter is related to
the send.private scenario. There are four possible locations for a authorization
scenario. When Sympa seeks to apply an authorization scenario, it looks first
in the related list directory /usr/local/sympa-stable/expl/<list>/scenari.
If it does not find the file there, it scans the current robot configuration di-
rectory /usr/local/sympa-stable/etc/my.domain.org/scenari, then the si-
te’s configuration directory /usr/local/sympa-stable/etc/scenari, and finally
/usr/local/sympa-stable/bin/etc/scenari, which is the directory installed by
the Makefile.

An authorization scenario is a small configuration language to describe who can per-
form an operation and which authentication method is requested for it. An authorization
scenario is an ordered set of rules. The goal is to provide a simple and flexible way to
configure authorization and required authentication method for each operation.

Each authorization scenario rule contains :
– a condition : the condition is evaluated by Sympa. It can use variables such as [sender]

for the sender e-mail, [list] for the listname etc.
– an authentication method. The authentication method can be smtp, md5 or smime.

The rule is applied by Sympa if both condition and authentication method match the
runtime context. smtp is used if Sympa use the SMTP from : header , md5 is used if
a unique md5 key as been returned by the requestor to validate her message, smime
is used for signed messages (see 26.4.3, page 223).

– a returned atomic action that will be executed by Sympa if the rule matches
Example

del.auth
title.us deletion performed only by list owners, need authentication
title.fr suppression réservée au propriétaire avec authentification

125

126 CHAPITRE 13. AUTHORIZATION SCENARIOS

title.es eliminacin reservada slo para el propietario, necesita autentificacin

is_owner([listname],[sender]) smtp -> request_auth
is_listmaster([sender]) smtp -> request_auth
true() md5,smime -> do_it

13.1 rules specifications

An authorization scenario consists of rules, evaluated in order beginning with the first.
Rules are defined as follows :

<rule> ::= <condition> <auth_list> -> <action>

<condition> ::= [!] <condition
| true ()
| all ()
| equal (<var>, <var>)
| match (<var>, /perl_regexp/)

| search (<filter.ldap>,<var>)
| is_subscriber (<listname>, <var>)
| is_owner (<listname>, <var>)
| is_editor (<listname>, <var>)
| is_listmaster (<var>)
| older (<date>, <date>) # true if first date is anterior to the second date
| newer (<date>, <date>) # true if first date is posterior to the second date

<var> ::= [email] | [sender] | [user-><user_key_word>] | [previous_email]
| [remote_host] | [remote_addr] | [user_attributes-><user_attributes_keyword>]

| [subscriber-><subscriber_key_word>] | [list-><list_key_word>] | [env-><env_var>]
| [conf-><conf_key_word>] | [msg_header-><smtp_key_word>] | [msg_body]
| [msg_part->type] | [msg_part->body] | [msg_encrypted] | [is_bcc] | [current_date]

| [topic-auto] | [topic-sender,] | [topic-editor] | [topic] | [topic-needed]
| <string>

[is_bcc] ::= set to 1 if the list is neither in To: nor Cc:

[sender] ::= email address of the current user (used on web or mail interface). Default value is ’nobody’

[previous_email] ::= old email when changing subscription email in preference page.

[msg_encrypted] ::= set to ’smime’ if the message was S/MIME encrypted

[topic-auto] ::= topic of the message if it has been automatically tagged

[topic-sender] ::= topic of the message if it has been tagged by sender

[topic-editor] ::= topic of the message if it has been tagged by editor

13.1. RULES SPECIFICATIONS 127

[topic] ::= topic of the message

[topic-needed] ::= the message has not got any topic and message topic are required for the list

<date> ::= ’<date_element> [+|- <date_element>]’

<date_element> ::= <epoch_date> | <var> | <date_expr>

<epoch_date> ::= <integer>

<date_expr> ::= <integer>y<integer>m<integer>d<integer>h<integer>min<integer>sec

<listname> ::= [listname] | <listname_string>

<auth_list> ::= <auth>,<auth_list> | <auth>

<auth> ::= smtp|md5|smime

<action> ::= do_it [,notify]
| do_it [,quiet]

| reject(reason=<reason_key>)
| reject(tt2=<tpl_name>)

| request_auth
| owner

| editor
| editorkey[,quiet]
| listmaster

<reason_key> ::= match a key in mail_tt2/authorization_reject.tt2 template corresponding to
an information message about the reason of the reject of the user

<tpl_name> ::= corresponding template (<tpl_name>.tt2) is send to the sender

<user_key_word> ::= email | gecos | lang | password | cookie_delay_user
| <additional_user_fields>

<user_attributes_key_word> ::= one of the user attributes provided by the SSO system via environment variables. The [user_attributes] structure is available only if user authenticated with a generic_sso.

<subscriber_key_word> ::= email | gecos | bounce | reception
| visibility | date | update_date

| <additional_subscriber_fields>

<list_key_word> ::= name | host | lang | max_size | priority | reply_to |
status | subject | account | total

<conf_key_word> ::= domain | email | listmaster | default_list_priority |
sympa_priority | request_priority | lang | max_size

128 CHAPITRE 13. AUTHORIZATION SCENARIOS

(Refer to 16.8, page 144 for date format definition)

The function to evaluate scenario is described in section 28.2.6, page 247.

perl regexp can contain the string [host] (interpreted at run time as the list or robot
domain). The variable notation [msg header-><smtp key word>] is interpreted as the
SMTP header value only when evaluating the authorization scenario for sending mes-
sages. It can be used, for example, to require editor validation for multipart messages.
[msg part->type] and [msg part->body] are the MIME parts content-types and bodies ;
the body is available for MIME parts in text/xxx format only.

The difference between editor and editorkey is, that with editor the message is simply
forwarded to the moderaotr. He then can forward it to the list, if he wishes. editorkey
assigns a key to the message and sends it to the moderator together with the message.
So the moderator can just send back the key to distribute the message. Please note,
that moderation from the webinterface is only possible when using editorkey, because
otherwise there is no copy of the message saved on the server.

A bunch of authorization scenarios is provided with the Sympa distribution ; they pro-
vide a large set of configuration that allow to create lists for most usage. But you will
probably create authorization scenarios for your own need. In this case, don’t forget to
restart Sympa and wwsympa because authorization scenarios are not reloaded dynami-
caly.

These standard authorization scenarios are located in the
/usr/local/sympa-stable/bin/etc/scenari/ directory. Default scenarios
are named <command>.default.

You may also define and name your own authorization scenarios. Store them in the
/usr/local/sympa-stable/etc/scenari directory. They will not be overwrit-
ten by Sympa release. Scenarios can also be defined for a particular virtual host
(using directory /usr/local/sympa-stable/etc/<robot>/scenari) or for a list (
/usr/local/sympa-stable/expl/<robot>/<list>/scenari). Sympa will not
dynamically detect that a list config should be reloaded after a scenario has been
changed on disk.

Example :

Copy the previous scenario to scenari/subscribe.rennes1 :

equal([sender], ’userxxx@univ-rennes1.fr’) smtp,smime -> reject
match([sender], /univ-rennes1\.fr$/) smtp,smime -> do_it
true() smtp,smime -> owner

You may now refer to this authorization scenario in any list configuration file, for
example :

13.2. LDAP NAMED FILTERS 129

subscribe rennes1

13.2 LDAP Named Filters

At the moment Named Filters are only used in authorization scenarios. They enable to
select a category of people who will be authorized or not to realise some actions.

As a consequence, you can grant privileges in a list to people belonging to an LDAP
directory thanks to an authorization scenario.

13.2.1 Definition

People are selected through an LDAP filter defined in a configu-
ration file. This file must have the extension ’.ldap’.It is stored in
/usr/local/sympa-stable/etc/search filters/.

You must give several informations in order to create a Named Filter :
– host

A list of host :port LDAP directories (replicates) entries.
– suffix

Defines the naming space covered by the search (optional, depending on the LDAP
server).

– filter
Defines the LDAP search filter (RFC 2254 compliant). But you must absolutely take
into account the first part of the filter which is : (’mail attribute’ = [sender]) as shown
in the example. you will have to replce ’mail attribute’ by the name of the attribute
for the email. Sympa verifies if the user belongs to the category of people defined in
the filter.

– scope
By default the search is performed on the whole tree below the specified base object.
This may be changed by specifying a scope :
– base : Search only the base object.
– one

Search the entries immediately below the base object.
– sub

Search the whole tree below the base object. This is the default.
– bind dn

If anonymous bind is not allowed on the LDAP server, a DN and password can be
used.

– bind password
This password is used, combined with the bind dn above.

example.ldap : we want to select the professors of mathematics in the university of
Rennes1 in France

130 CHAPITRE 13. AUTHORIZATION SCENARIOS

host ldap.univ-rennes1.fr:389,ldap2.univ-rennes1.fr:390
suffix dc=univ-rennes1.fr,dc=fr
filter (&(canonic_mail = [sender])(EmployeeType = prof)(subject = math))
scope sub

13.2.2 Search Condition

The search condition is used in authorization scenarios which are defined and described
in (see 13)

The syntax of this rule is :

search(example.ldap,[sender]) smtp,smime,md5 -> do_it

The variables used by ’search’ are :
– the name of the LDAP Configuration file

– the [sender]
That is to say the sender email address.

Note that Sympa processes maintain a cache of processed search conditions to limit
access to the LDAP directory ; each entry has a lifetime of 1 hour in the cache.

The method of authentication does not change.

13.3 scenario inclusion

Scenarios can also contain includes :

subscribe
include commonreject
match(, /cru\.fr$/) smtp,smime -> do_it

true() smtp,smime -> owner

In this case sympa applies recursively the scenario named include.commonreject
before introducing the other rules. This possibility was introduced in order to facilitate
the administration of common rules.

You can define a set of common scenario rules, used by all lists. in-
clude.<action>.header is automatically added to evaluated scenarios.

13.4. HIDDING SCENARIO FILES 131

13.4 Hidding scenario files

Because Sympa is distributed with many default scenario files, you may want to hidde
some of them to list owners (to make list admin menus shorter and readable). To hidde
a scenario file you should create an empty file with the :ignore suffix. Depending
on where this file has been created will make it ignored at either a global, robot or list
level.

Example :

/usr/local/sympa-stable/etc/my.domain.org/scenari/send.intranetorprivate :ignore

The intranetorprivate send scenario will be hidden (on the web admin interface),
at the my.domain.orgrobot level only.

Chapitre 14

virtual host

Sympa is designed to manage multiple distinct mailing list servers on a single host
with a single Sympa installation. Sympa virtual hosts are like Apache virtual hosting.
Sympa virtual host definition includes a specific email address for the robot itself and
its lists and also a virtual http server. Each robot provides access to a set of lists, each
list is related to only one robot.

Most configuration parameters can be redefined for each robot except general Sympa
installation parameters (binary and spool location, smtp engine, antivirus plugging,...).

The virtual host name as defined in Sympa documentation and configuration file refers
to the Internet domaine of the virtual host.

Note that the main limitation of virtual hosts in Sympa is that you cannot create 2 lists
with the same name (local part) among your virtual hosts.

14.1 How to create a virtual host

You don’t need to install several Sympa servers. A single sympa.pl daemon and one
or more fastcgi servers can serve all virtual host. Just configure the server environment
in order to accept the new domain definition.
– The DNS must be configured to define a new mail exchanger record (MX) to route

message to your server. A new host (A record) or alias (CNAME) are mandatory to
define the new web server.

– Configure your MTA (sendmail, postfix, exim, ...) to accept incoming messages for
the new robot domain. Add mail aliases for the robot :
Examples (with sendmail) :

sympa@your.virtual.domain: "| /usr/local/sympa-stable/bin/queue sympa@your.virtual.domain"
listmaster@your.virtual.domain: "| /usr/local/sympa-stable/bin/queue listmaster@your.virtual.domain"

132

14.2. ROBOT.CONF 133

bounce+*@your.virtual.domain: "| /usr/local/sympa-stable/bin/bouncequeue sympa@your.virtual.domain"\\

– Define a virtual host in your HTTPD server. The fastcgi servers defined in the
common section of you httpd server can be used by each virtual host. You don’t
need to run dedicated fascgi server for each virtual host.
Examples :

FastCgiServer /usr/local/sympa-stable/bin/wwsympa.fcgi -processes 3 -idle-timeout 120
.....
<VirtualHost 195.215.92.16>
ServerAdmin webmaster@your.virtual.domain
DocumentRoot /var/www/your.virtual.domain
ServerName your.virtual.domain

<Location /sympa>
SetHandler fastcgi-script

</Location>

ScriptAlias /sympa /usr/local/sympa-stable/bin/wwsympa.fcgi

</VirtualHost>

– Create a /usr/local/sympa-stable/etc/your.virtual.domain/robot.conf
configuration file for the virtual host. Its format is a subset of sympa.conf and is
described in the next section ; a sample robot.conf is provided.

– Create a /usr/local/sympa-stable/expl/your.virtual.domain/ directory
that will contain the virtual host mailing lists directories. This directory should have
the sympa user as its owner and must have read and write access for this user.

su sympa -c ’mkdir /usr/local/sympa-stable/expl/your.virtual.domain’
chmod 750 /usr/local/sympa-stable/expl/your.virtual.domain

14.2 robot.conf

A robot is named by its domain, let’s say my.domain.organd defined by a di-
rectory /usr/local/sympa-stable/etc/my.domain.org. This directory must
contain at least a robot.conf file. This files has the same format as
/usr/local/sympa-stable/etc/sympa.conf (have a look at robot.conf in the
sample dir). Only the following parameters can be redefined for a particular robot :

– http host
This hostname will be compared with ’SERVER NAME’ environment variable in
wwsympa.fcgi to determine the current Virtual Host. You can a path at the end of
this parameter if you are running multiple virtual hosts on the same host.

Examples: \\
http_host myhost.mydom
http_host myhost.mydom/sympa

– wwsympa url
The base URL of WWSympa

134 CHAPITRE 14. VIRTUAL HOST

– soap url
The base URL of Sympa’s SOAP server (if it is running ; see 11, page 99)

– cookie domain
– email
– title
– default home
– create list
– lang
– supported lang
– log smtp
– listmaster
– max size
– css path
– css url
– logo html definition
– color 0, color 1 ... color 15
– deprecated color definition dark color, light color, text color, bg color,
error color, selected color, shaded color

These settings overwrite the equivalent global parameter defined in
/usr/local/sympa-stable/etc/sympa.conf for my.domain.orgrobot ; the
main listmaster still has privileges on Virtual Robots though. The http host
parameter is compared by wwsympa with the SERVER NAME environment variable
to recognize which robot is in used.

14.2.1 Robot customization

In order to customize the web look and feel, you may edit the CSS definition. CSS
are defined in a template named css.tt2. Any robot can use static css file for making
Sympa web interface faster. Then you can edit this static definition and change web
style. Please refer to css path css url. You can also quickly introduce a logo in left
top corner of all pages configuring logo html definition parameter in robot.conf
file.

In addition, if needed, you can customize each virtual host using its set of templates
and authorization scenarios.

/usr/local/sympa-stable/etc/my.domain.org/web tt2/,
/usr/local/sympa-stable/etc/my.domain.org/mail tt2/,
/usr/local/sympa-stable/etc/my.domain.org/scenari/ directo-
ries are searched when loading templates or scenari before searching into
/usr/local/sympa-stable/etc and /usr/local/sympa-stable/bin/etc.
This allows to define different privileges and a different GUI for a Virtual Host.

14.3. MANAGING MULTIPLE VIRTUAL HOSTS 135

14.3 Managing multiple virtual hosts

If you are managing more than 2 virtual hosts, then you might cinsider moving
all the mailing lists in the default robot to a dedicated virtual host located in the
/usr/local/sympa-stable/expl/my.domain.org/ directory. The main benefit of
this organisation is the ability to define default configuration elements (templates or au-
thorization scenarios) for this robot without inheriting them within other virtual hosts.

To create such a virtual host, you need to create
/usr/local/sympa-stable/expl/my.domain.org/ and
/usr/local/sympa-stable/etc/my.domain.org/ directories ; cus-
tomize host, http host and wwsympa url parameters in the
/usr/local/sympa-stable/etc/my.domain.org/robot.conf with the same
values as the default robot (as defined in sympa.conf and wwsympa.conf files).

136 CHAPITRE 14. VIRTUAL HOST

Chapitre 15

Interaction between Sympa and
other applications

15.1 Soap

See 11, page 99.

15.2 RSS channel

See 10, page 95.

15.3 Sharing WWSympa authentication with other ap-
plications

See 12.6, page 122.

15.4 Sharing data with other applications

You may extract subscribers, owners and editors for a list from any of :
– a text file
– a Relational database

137

138CHAPITRE 15. INTERACTION BETWEEN SYMPA AND OTHER APPLICATIONS

– a LDAP directory
See user data source list parameter 20.2.1, page 180.

The three tables can have more fields than the one used by Sympa, by defining these
additional fields, they will be available from within Sympa’s authorization scenarios
and templates (see 7.10.11, page 68 and 7.10.12, page 69).

See data inclusion file 17.7, page 152.

15.5 Subscriber count

subscriber count

The number of subscribers of a list can be get from an external application by reques-
ting function ’subscriber count’ on the Web interface.

Example: http ://my.server/wws/subscriber count/mylist

Chapitre 16

Customizing Sympa/WWSympa

16.1 Template file format

Template files within Sympa used to be in a proprietary format that has been replaced
with the TT21 template format.

You will find detailed documentation about the TT2 syntax on the web site :
http ://www.tt2.org

Here are some aspects regarding templates that are specific to Sympa :
– References to PO catalogue are noted with the [% loc %] tag that may

include parameters. Example: [%|loc(list.name,list.host)%]Welcome to
list %1%2[%END%].

– Few exceptions apart, templates cannot insert or parse a file given its full or relative
path, for security reason. Only the file name should be provided ; the TT2 parser
will then use the INCLUDE PATH provided by Sympa to find the relevant file to
insert/parse.

– The qencode filter should be used if a template includes SMTP header
fields that should be Q-encoded. Example: [% FILTER qencode %]Message à
modérer[%END%]

– You can write different versions of a template file in different language,
each of them being located in a subdirectory of the tt2 directory. Example:
/web tt2/fr FR/helpfile.tt2

1http ://www.tt2.org

139

http://www.tt2.org

140 CHAPITRE 16. CUSTOMIZING SYMPA/WWSYMPA

16.2 Site template files

These files are used by Sympa as service messages for the HELP, LISTS and REMIND *
commands. These files are interpreted (parsed) by Sympa and respect the TT2 template
format ; every file has a .tt2 extension. See 16.1, page 139.

Sympa looks for these files in the following order (where <list> is the listname if defi-
ned, <action> is the name of the command, and <lang> is the preferred language of the
user) :

1. /usr/local/sympa-stable/expl/<list>/mail tt2/<lang>/<action>.tt2.
2. /usr/local/sympa-stable/expl/<list>/mail tt2/<action>.tt2.
3. /usr/local/sympa-stable/etc/my.domain.org/mail tt2/<lang>/<action>.tt2.
4. /usr/local/sympa-stable/etc/my.domain.org/mail tt2/<action>.tt2.
5. /usr/local/sympa-stable/etc/mail tt2/<lang>/<action>.tt2.
6. /usr/local/sympa-stable/etc/mail tt2/<action>.tt2.
7. /usr/local/sympa-stable/bin/etc/mail tt2/<lang>/<action>.tt2.
8. /usr/local/sympa-stable/bin/etc/mail tt2/<action>.tt2.

If the file starts with a From : line, it is considered as a full message and will be sent (af-
ter parsing) without adding SMTP headers. Otherwise the file is treated as a text/plain
message body.

The following variables may be used in these template files :

- [% conf.email %] : sympa e-mail address local part
- [% conf.domain %] : sympa robot domain name
- [% conf.sympa %] : sympa’s complete e-mail address
- [% conf.wwsympa url %] : WWSympa root URL
- [% conf.listmaster %] : listmaster e-mail addresses
- [% user.email %] : user e-mail address
- [% user.gecos %] : user gecos field (usually his/her name)
- [% user.password %] : user password
- [% user.lang %] : user language

16.2.1 helpfile.tt2

This file is sent in response to a HELP command. You may use additional variables
- [% is owner %] : TRUE if the user is list owner
- [% is editor %] : TRUE if the user is list editor

16.2.2 lists.tt2

File returned by LISTS command. An additional variable is available :

16.2. SITE TEMPLATE FILES 141

- [% lists %] : this is a hash table indexed by list names and containing lists’ subjects.
Only lists visible to this user (according to the visibility list parameter) are listed.

Example :

These are the public lists for [conf->email]@[conf->domain]

[% FOREACH l = lists %]
[% l.key %]@[% l.value.host %] : [% l.value.subject %]

[% END %]

16.2.3 global remind.tt2

This file is sent in response to a REMIND * command. (see 27.2, page 230) You may
use additional variables
- [% lists %] : this is an array containing the list names the user is subscribed to.
Example :

This is a subscription reminder.

You are subscribed to the following lists :
[% FOREACH l = lists %]

[% l %] : [% conf.wwsympa_url \%]/info/[% l %]

[% END %]

Your subscriber e-mail : [% user.email %]
Your password : [% user.password %]

16.2.4 your infected msg.tt2

This message is sent to warn the sender of a virus infected mail, indicating the name of
the virus found (see ??, page ??).

142 CHAPITRE 16. CUSTOMIZING SYMPA/WWSYMPA

16.3 Web template files

You may define your own web template files, different from the standard ones. WW-
Sympa first looks for list specific web templates, then for site web templates, before
falling back on its defaults.

Your list web template files should be placed in the
/usr/local/sympa-stable/expl/mylist/web tt2 directory ; your site web
templates in ~/usr/local/sympa-stable/etc/web tt2 directory.

Note that web colors are defined in Sympa’s main Makefile (see 3.3, page 29).

16.4 Internationalization

Sympa was originally designed as a multilingual Mailing List Manager. Even in its
earliest versions, Sympa separated messages from the code itself, messages being sto-
red in NLS catalogues (according to the XPG4 standard). Later a lang list parameter
was introduced. Nowadays Sympa is able to keep track of individual users’ language
preferences.

If you are willing to provide Sympa into your native language, please check the trans-
lation howto (http ://www.sympa.org/howtotranslate.html) ;

16.4.1 Sympa internationalization

Every message sent by Sympa to users, owners and editors is outside the code, in a mes-
sage catalog. These catalogs are located in the /usr/local/sympa-stable/locale
directory.

To tell Sympa to use a particular message catalog, you can should set the lang para-
meter in sympa.conf.

16.4.2 List internationalization

The lang list parameter defines the language for a list. It is currently used by WW-
Sympa and to initialize users’ language preferences at subscription time.

In future versions, all messages returned by Sympa concerning a list should be in the
list’s language.

http://www.sympa.org/howtotranslate.html

16.5. TOPICS 143

16.4.3 User internationalization

The user language preference is currently used by WWSympa only. There is no e-mail-
based command for a user to set his/her language. The language preference is initialized
when the user subscribes to his/her first list. WWSympa allows the user to change it.

16.5 Topics

WWSympa’s homepage shows a list of topics for classifying mailing lists. This is dy-
namically generated using the different lists’ topics configuration parameters. A list
may appear in multiple categories (This parameter is different from msg topic used
to tag list messages)

The list of topics is defined in the topics.conf configuration file, located in the
/usr/local/sympa-stable/etc directory. The format of this file is as follows :

<topic1_name>
title <topic1 title>
title.fr <topic french title>
visibility <topic1 visibility>
....
<topicn_name/subtopic_name>
title <topicn title>
title.de <topicn german title>

You will notice that subtopics can be used, the separator being /. The topic name is com-
posed of alphanumerics (0-1a-zA-Z) or underscores (). The order in which the topics
are listed is respected in WWSympa’s homepage. The visibility line defines who can
view the topic (now available for subtopics). It refers to the associated topics visibility
authorization scenario. You will find a sample topics.conf in the sample directory ;
NONE is installed as the default.

A default topic is hard-coded in Sympa : default. This default topic contains all lists for
which a topic has not been specified.

16.6 Authorization scenarios

See 13, page 125.

144 CHAPITRE 16. CUSTOMIZING SYMPA/WWSYMPA

16.7 Loop detection

Sympa uses multiple heuristics to avoid loops in Mailing lists

First, it rejects messages coming from a robot (as indicated by the From : and other
header fields), and messages containing commands.

Secondly, every message sent by Sympa includes an X-Loop header field set to the
listname. If the message comes back, Sympa will detect that it has already been sent
(unless X-Loop header fields have been erased).

Thirdly, Sympa keeps track of Message IDs and will refuse to send multiple messages
with the same message ID to the same mailing list.

Finally, Sympa detect loops arising from command reports (i.e. sympa-generated re-
plies to commands). This sort of loop might occur as follows :

1 - X sends a command to Sympa
2 - Sympa sends a command report to X
3 - X has installed a home-made vacation program replying to programs
4 - Sympa processes the reply and sends a report
5 - Looping to step 3

Sympa keeps track (via an internal counter) of reports sent to any particular address.
The loop detection algorithm is :

– Increment the counter
– If we are within the sampling period (as defined by the
loop command sampling delay parameter)
– If the counter exceeds the loop command max parameter, then do not send the

report, and notify the listmaster
– Else, start a new sampling period and reinitialize the counter, i.e. multiply it by

the loop command decrease factor parameter

16.8 Tasks

A task is a sequence of simple actions which realize a complex routine. It is executed
in background by the task manager daemon and allow the list master to automate the
processing of recurrent tasks. For example a task sends every year the subscribers of a
list a message to remind their subscription.

A task is created with a task model. It is a text file which describes a sequence
of simple actions. It may have different versions (for instance reminding subscri-
bers every year or semester). A task model file name has the following format :

16.8. TASKS 145

<model name>.<model version>.task. For instance remind.annual.task or
remind.semestrial.task.

Sympa provides several task models stored in
/usr/local/sympa-stable/bin/etc/global task models and
/usr/local/sympa-stable/bin/etc/list task models directories. Others
can be designed by the listmaster.

A task is global or related to a list.

16.8.1 List task creation

You define in the list config file the model and the version you want to use (see 20.3.5,
page 189). Then the task manager daemon will automatically create the task by looking
for the appropriate model file in different directories in the following order :

1. /usr/local/sympa-stable/expl/<list name>/

2. /usr/local/sympa-stable/etc/list task models/

3. /usr/local/sympa-stable/bin/etc/list task models/

See also 17.10, page 156, to know more about standard list models provided with
Sympa.

16.8.2 Global task creation

The task manager daemon checks if a version of a global task model is specified in
sympa.conf and then creates a task as soon as it finds the model file by looking in
different directories in the following order :

1. /usr/local/sympa-stable/etc/global task models/

2. /usr/local/sympa-stable/bin/etc/global task models/

16.8.3 Model file format

Model files are composed of comments, labels, references, variables, date values and
commands. All those syntactical elements are composed of alphanumerics (0-9a-zA-Z)
and underscores ().

– Comment lines begin by ’#’ and are not interpreted by the task manager.
– Label lines begin by ’/’ and are used by the next command (see below).

146 CHAPITRE 16. CUSTOMIZING SYMPA/WWSYMPA

– References are enclosed between brackets ’[]’. They refer to a value depending on
the object of the task (for instance [list->name]). Those variables are instantiated
when a task file is created from a model file. The list of available variables is the
same as for templates (see 17.8, see page 153) plus [creation date] (see below).

– Variables store results of some commands and are paramaters for others. Their name
begins with ’@’.

– A date value may be written in two ways :
– absolute dates follow the format : xxxxYxxMxxDxxHxxMin. Y is the year, M

the month (1-12), D the day (1-28|30|31, leap-years are not managed), H the
hour (0-23), Min the minute (0-59). H and Min are optionnals. For instance,
2001y12m4d44min is the 4th of December 2001 at 00h44.

– relative dates use the [creation date] or [execution date] references. [crea-
tion date] is the date when the task file is created, [execution date] when the
command line is executed. A duration may follow with ’+’ or ’-’ operators. The
duration is expressed like an absolute date whose all parameters are optionnals.
Examples : [creation date], [execution date]+1y, [execution date]-6m4d

– Command arguments are separated by commas and enclosed between parenthesis
’()’.

Here is the list of current avalable commands :
– stop ()

Stops the execution of the task and delete the task file
– next (<date value>, <label>)

Stop the execution. The task will go on at the date value and begin at the label line.
– <@deleted users> = delete subs (<@user selection>)

Delete @user selection email list and stores user emails successfully deleted in @de-
leted users.

– send msg (<@user selection>, <template>)
Send the template message to emails stored in @user selection.

– @user selection = select subs (<condition>)
Store emails which match the condition in @user selection. See 8.6 Authorization
Scenarios section to know how to write conditions. Only available for list models.

– create (global — list (<list name>), <model type>, <model>)
Create a task for object with model file ~model type.model.task.

– chk cert expiration (<template>, <date value>)
Send the template message to emails whose certificate has expired or will expire
before the date value.

– update crl (<file name>, <date value>)
Update certificate revocation lists (CRL) which are expired or will expire before the
date value. The file stores the CRL’s URLs.

– purge orphan bounces()
Clean bounces by removing unsubscribed-users archives.

– eval bouncers()
Evaluate all bouncing users of all list and give them a score from 0 to 100. (0 = no
bounces for this user, 100 is for users who should be removed).

– process bouncers()
Execute actions defined in list configuration on each bouncing users, according to
their score.

Model files may have a scenario-like title line at the beginning.

16.8. TASKS 147

When you change a configuration file by hand, and a task parameter is created or mo-
dified, it is up to you to remove existing task files in the task/ spool if needed. Task
file names have the following format :

<date>.<label>.<model name>.<list name | global> where :

– date is when the task is executed, it is an epoch date
– label states where in the task file the execution begins. If empty, starts at the begin-

ning

16.8.4 Model file examples

– remind.annual.task

– expire.annual.task

– crl update.daily.task

title.gettext daily update of the certificate revocation list

/ACTION
update_crl (CA_list, [execution_date]+1d)
next ([execution_date] + 1d, ACTION)

148 CHAPITRE 16. CUSTOMIZING SYMPA/WWSYMPA

Chapitre 17

Mailing list definition

This chapter describes what a mailing list is made of within Sympa environment.

17.1 Mail aliases

See list aliases section, 17.1, page 149)

17.2 List configuration file

The configuration file for the mylist list is named
/usr/local/sympa-stable/expl/my.domain.org/mylist/config (or
/usr/local/sympa-stable/expl/mylist/config if no virtual host is defi-
ned). Sympa reloads it into memory whenever this file has changed on disk. The file
can either be edited via the web interface or directly via your favourite text editor.

If you have set the cache list config sympa.conf para-
meter (see 7.9.1, page 65), a binary version of the config
(/usr/local/sympa-stable/expl/my.domain.org/mylist/config.bin is
maintained to allow a faster restart of daemons (this is especialy usefull for sites
managing lots of lists).

Be careful to provide read access for Sympa user to this file !

You will find a few configuration files in the sample directory.

List configuration parameters are described in the list creation section, 20, page 175.

149

150 CHAPITRE 17. MAILING LIST DEFINITION

17.3 Examples of configuration files

This first example is for a list open to everyone :

subject First example (an open list)

visibility noconceal

owner
email Pierre.David@prism.uvsq.fr

send public

review public

The second example is for a moderated list with authenticated subscription :

subject Second example (a moderated list)

visibility noconceal

owner
email moi@ici.fr

editor
email big.prof@ailleurs.edu

send editor

subscribe auth

review owner

reply_to_header
value list

cookie 142cleliste

The third example is for a moderated list, with subscription controlled by the owner,
and running in digest mode. Subscribers who are in digest mode receive messages on
Mondays and Thursdays.

owner
email moi@ici.fr

editor

17.4. SUBSCRIBERS FILE 151

email prof@ailleurs.edu

send editor

subscribe owner

review owner

reply_to_header
value list

digest 1,4 12:00

17.4 Subscribers file

Be carefull : Since version 3.3.6 of Sympa, a RDBMS is required for internal data
storage. Flat file should not be use anymore except for testing purpose. Sympa will not
use this file if the list is configured with include or database user data source.

The /usr/local/sympa-stable/expl/mylist/subscribers file is automatically
created and populated. It contains information about list subscribers. It is not advisable
to edit this file. Main parameters are :

– email address
E-mail address of subscriber.

– gecos data
Information about subscriber (last name, first name, etc.) This parameter is optional
at subscription time.

– reception nomail | digest | summary | notice | txt | html | urlize |
not me |
Special receive modes which the subscriber may select. Special modes can be ei-
ther nomail, digest, summary, notice, txt, html, urlize, not me . In normal receive
mode, the receive attribute for a subscriber is not displayed. In this mode subscription
to message topics is available. See the SET LISTNAME SUMMARY (27.1, page 228),
the SET LISTNAME NOMAIL command (27.1, page 229), and the digest parameter
(20.4.9, page 196).

– visibility conceal
Special mode which allows the subscriber to remain invisible when a REVIEW com-
mand is issued for the list. If this parameter is not declared, the subscriber will be
visible for REVIEW. Note : this option does not affect the results of a REVIEW com-
mand issued by an owner. See the SET LISTNAME MAIL command (27.1, page 229)
for details.

152 CHAPITRE 17. MAILING LIST DEFINITION

17.5 Info file

/usr/local/sympa-stable/expl/mylist/info should contain a detailed text
description of the list, to be displayed by the INFO command. It can also be referenced
from template files for service messages.

17.6 Homepage file

/usr/local/sympa-stable/expl/mylist/homepage is the HTML text on the
WWSympa info page for the list.

17.7 Data inclusion file

Sympa will use these files only if the list is configured in include2
user data source mode. Every file has the .incl extension. More over, these files
must be declared in paragraphs owner include or editor inlude in the list confi-
guration file without the .incl extension (see 20, page 175). This files can be template
file.

Sympa looks for them in the following order :

1. /usr/local/sympa-stable/expl/mylist/data sources/<file>.incl.

2. /usr/local/sympa-stable/etc/data sources/<file>.incl.

3. /usr/local/sympa-stable/etc/my.domain.org/data sources/<file>.incl.

These files are used by Sympa to load administrative data in a relational database :
Owners or editors are defined intensively (definition of criteria owners or editors must
satisfy). Includes can be performed by extracting e-mail addresses using an SQL or
LDAP query, or by including other mailing lists.

A data inclusion file is composed of paragraphs separated by blank lines and
introduced by a keyword. Valid paragraphs are include file, include list,
include remote sympa list, include sql query and include ldap query.
They are described in the list configuration parameters chapitre, 20, page 175.

When this file is a template, used variables are array elements (param array). This
array is instantiated by values contained in the subparameter source parameter of
owner include or editor inlude.

Example :

– in the list configuration file :

17.8. LIST TEMPLATE FILES 153

owner_include
source myfile
source_parameters mysql,rennes1,stduser,mysecret,studentbody,student

– in myfile.incl :

include_sql_query
db_type [% param.0 %]
host sqlserv.admin.univ-[% param.1 %].fr
user [% param.2 %]
passwd [% param.3 %]

db_name [% param.4 %]
sql_query SELECT DISTINCT email FROM [% param.5 %]

– resulting data inclusion file :

include_sql_query
db_type mysql
host sqlserv.admin.univ-rennes1.fr

user stduser
passwd mysecret
db_name studentbody
sql_query SELECT DISTINCT email FROM student

17.8 List template files

These files are used by Sympa as service messages for commands such as SUB, ADD,
SIG, DEL, REJECT. These files are interpreted (parsed) by Sympa and respect the tem-
plate format ; every file has the .tt2 extension. See 16.1, page 139.

Sympa looks for these files in the following order :

1. /usr/local/sympa-stable/expl/mylist/mail tt2/<file>.tt2

2. /usr/local/sympa-stable/etc/mail tt2/<file>.tt2.

3. /usr/local/sympa-stable/bin/etc/mail tt2/<file>.tt2.

If the file starts with a From : line, it is taken to be a full message and will be sent
(after parsing) without the addition of SMTP headers. Otherwise the file is treated as a
text/plain message body.

The following variables may be used in list template files :

- [% conf.email %] : sympa e-mail address local part
- [% conf.domain %] : sympa robot domain name
- [% conf.sympa %] : sympa’s complete e-mail address
- [% conf.wwsympa url %] : WWSympa root URL

154 CHAPITRE 17. MAILING LIST DEFINITION

- [% conf.listmaster %] : listmaster e-mail addresses
- [% list.name %] : list name
- [% list.host %] : list hostname (default is sympa robot domain name)
- [% list.lang %] : list language
- [% list.subject %] : list subject
- [% list.owner %] : list owners table hash
- [% user.email %] : user e-mail address
- [% user.gecos %] : user gecos field (usually his/her name)
- [% user.password %] : user password
- [% user.lang %] : user language
- [% execution date %] : the date when the scenario is executed

You may also dynamically include a file from a template using the [% INSERT %]
directive.

Example :

Dear [% user.email %],

Welcome to list [% list.name %]@[% list.host %].

Presentation of the list :
[% INSERT ’info’ %]

The owners of [% list.name %] are :
[% FOREACH ow = list.owner %]

[% ow.value.gecos %] <[% ow.value.email %]>
[% END %]

17.8.1 welcome.tt2

Sympa will send a welcome message for every subscription. The welcome message can
be customized for each list.

17.8.2 bye.tt2

Sympa will send a farewell message for each SIGNOFF mail command received.

17.8. LIST TEMPLATE FILES 155

17.8.3 removed.tt2

This message is sent to users who have been deleted (using the DELETE command)
from the list by the list owner.

17.8.4 reject.tt2

Sympa will send a reject message to the senders of messages rejected by the list editor.
If the editor prefixes her REJECT with the keyword QUIET, the reject message will not
be sent.

17.8.5 invite.tt2

This message is sent to users who have been invited (using the INVITE command) to
subscribe to a list.

You may use additional variables
- [% requested by %] : e-mail of the person who sent the INVITE command
- [% url %] : the mailto : URL to subscribe to the list

17.8.6 remind.tt2

This file contains a message sent to each subscriber when one of the list owners sends
the REMIND command (see 27.2, page 230).

17.8.7 summary.tt2

Template for summaries (reception mode close to digest), see 27.1, page 228.

17.8.8 list aliases.tt2

Template that defines list mail alises. It is used by the alias manager script.

156 CHAPITRE 17. MAILING LIST DEFINITION

17.9 Stats file

/usr/local/sympa-stable/expl/mylist/stats is a text file containing statistics
about the list. Data are numerics separated by white space within a single line :

– Number of messages sent, used to generate X-sequence headers
– Number of messages X number of recipients
– Number of bytes X number of messages
– Number of bytes X number of messages X number of recipients
– Number of subscribers
– Last update date (epoch format) of the subscribers cache in DB, used by lists in

include2 mode only

17.10 List model files

These files are used by Sympa to create task files. They are interpreted (parsed) by the
task manager and respect the task format. See 16.8, page 144.

17.10.1 remind.annual.task

Every year Sympa will send a message (the template remind.tt2) to all subscribers
of the list to remind them of their subscription.

17.10.2 expire.annual.task

Every month Sympa will delete subscribers older than one year who haven’t answered
two warning messages.

17.11 Message header and footer

You may create /usr/local/sympa-stable/expl/mylist/message.header and
/usr/local/sympa-stable/expl/mylist/message.footer files. Their content
is added, respectively at the beginning and at the end of each message before
the distribution process. You may also include the content-type of the appended
part (when footer type list parameter s set to mime) by renaming the files to
message.header.mime and message.footer.mime.

17.11. MESSAGE HEADER AND FOOTER 157

The footer type list parameter defines whether to attach the header/footer content
as a MIME part (except for multipart/alternative messages), or to append them to the
message body (for text/plain messages).

Under certain circumstances, Sympa will NOT add headers/footers, here is its algo-
rythm :

if message is not multipart/signed
if footer_type==append
if message is text/plain
append header/footer to it

else if message is multipart AND first part is text/plain
append header/footer to first part

if footer_type==mime
if message is not multipart/alternative
add header/footer as a new MIME part

17.11.1 Archive directory

The /usr/local/sympa-stable/expl/mylist/archives/ directory contains the
archived messages for lists which are archived ; see 20.6.1, page 201. The files are
named in accordance with the archiving frequency defined by the archive parameter.

158 CHAPITRE 17. MAILING LIST DEFINITION

Chapitre 18

List creation, edition and
removal

The list creation can be done by two ways, according to listmaster needs :
– instanciation family to create and manage large number of related lists. In this case,

lists are linked to their family all along their life.
– command line creation of individual list with sympa.pl or on the Web interface

according to privileges defined by listmasters. Here lists are free from their model
creation.

Management of mailing lists by list owners is usually done via the Web interface : when
a list is created, whatever its status (pending or open), the owner can use WWSympa
admin features to modify list parameters, or to edit the welcome message, and so on.

WWSympa keeps logs of the creation and all modifications to a list as part of the
list’s config file (old configuration files are archived). A complete installation requires
some careful planning, although default values should be acceptable for most sites.

18.1 List creation

Mailing lists can have many different uses. Sympa offers a wide choice of parameters
to adapt a list behavior to different situations. Users might have difficulty selecting
all the correct parameters to make the list configuration, so instead of selecting each
parameters, list configuration is made with a list profile. This is an almost complete
list configuration, but with a number of unspecified fields (such as owner e-mail) to
be replaced by Sympa at list creation time. It is easy to create new list templates by
modifying existing ones. (Contributions to the distribution are welcome...)

159

160 CHAPITRE 18. LIST CREATION, EDITION AND REMOVAL

18.1.1 Data for list creation

To create a list, some data concerning list parameters are required :
– listname : name of the list,
– subject : subject of the list (a short description),
– owner(s) : by static definition and/or dynamic definition. In case of static defini-

tion, the parameter owner and its subparameter email are required. For dynamic
definition, the parameter owner include and its subparameter source are required,
indicating source file of data inclusion.

– list creation template : the typical list profile.
Moreover of these required data, provided values are assigned to vars being in the list
creation template. Then the result is the list configuration file :

On the Web interface, these data are given by the list creator in the web form. On
command line these data are given by an xml file.

18.1.2 XML file format

The xml file provides information on :

– the list name,
– values to assign vars in the list creation template
– the list description in order to be written in the list file info
– the name of the list creation template (only for list creation on command line with

sympa.pl, in a family context, the template is specified by the family name)
Here is an example of XML document that you can map with the following example
of list creation template. :

<?xml version="1.0" ?>
<list>
<listname>example</listname>

<type>my_profile</type>
<subject>a list example</subject>
<description/>
<status>open</status>
<shared_edit>editor</shared_edit>
<shared_read>private</shared_read>

<language>fr</language>
<owner multiple="1">

<email>serge.aumont@cru.fr</email>
<gecos>C.R.U.</gecos>

</owner>
<owner multiple="1">

<email>olivier.salaun@cru.fr</email>
</owner>

18.1. LIST CREATION 161

<owner_include multiple="1">
<source>my_file</source>

</owner_include>
<sql>

<type>oracle</type>
<host>sqlserv.admin.univ-x.fr</host>
<user>stdutilisateur</user>
<pwd>monsecret</pwd>
<name>les_etudiants</name>
<query>SELECT DISTINCT email FROM etudiant</query>

</sql>
</list>

subject [% subject %]

status [% status %]

[% IF topic %]
topics [% topic %]

[% END %]
visibility noconceal

send privateoreditorkey

Web_archive
access public

subscribe open_notify

shared_doc
d_edit [% shared_edit %]
d_read [% shared_read %]

lang [% language %]

[% FOREACH o = owner %]
owner
email [% o.email %]
profile privileged
[% IF o.gecos %]
gecos [% o.gecos %]
[% END %]

[% END %]
[% IF moderator %]

[% FOREACH m = moderator %]
editor

162 CHAPITRE 18. LIST CREATION, EDITION AND REMOVAL

email [% m.email %]

[% END %]
[% END %]

[% IF sql %]
include_sql_query
db_type [% sql.type %]
host [% sql.host %]
user [% sql.user %]
passwd [% sql.pwd %]
db_name [% sql.name %]
sql_query [% sql.query %]

[% END %]
ttl 360

The XML file format should comply with the following rules :
– The root element is <list>
– One XML element is mandatory : <listname> contains the name of the

list. That not excludes mandatory parameters for list creation (listname,
subject,owner.email and/or owner include.source).

– <type> : this element contains the name of template list creation, it is used for list
creation on command line with sympa.pl. In a family context, this element is no
used.

– <description> : the text contained in this element is written in list info file(it can
be a CDATA section).

– For other elements, its name is the name of the var to assign in the list creation
template.

– Each element concerning multiple parameters must have the multiple attribute set
to “1”, example : <owner multiple=’’1’’>.

– For composed and multiple parameters, sub-elements are used. Example for owner
parameter : <email> and <gecos> elements are contained in the <owner>element.
An element can only have homogeneous content.

– A list requires at least one owner, defined in the XML input file with one of the
following elements :
– <owner multiple=’’1’’> <email> ... </email> </owner>
– <owner include multiple=’’1’’> <source> ... </source>
</owner include>

18.2 List families

See chapter 19, page 167

18.3. LIST CREATION ON COMMAND LINE WITH SYMPA.PL 163

18.3 List creation on command line with sympa.pl

This way to create lists is independent of family.

Here is a sample command to create one list :.

sympa.pl –create list –robot my.domain.org–input file
/path/to/my file.xml

The list is created under the my robot robot and the list is described in the file
my file.xml. The XML file is described before, see 18.1.2, page 160.

By default, the status of the created list is open.

typical list profile (list template creation)

The list creator has to choose a profile for the list and put its name in the XML element
<type>.

List profiles are stored in /usr/local/sympa-stable/etc/create list templates
or in /usr/local/sympa-stable/bin/etc/create list templates (default of
distrib).

You might want to hide or modify profiles (not useful, or dange-
rous for your site). If a profile exists both in the local site direc-
tory /usr/local/sympa-stable/etc/create list templates and
/usr/local/sympa-stable/bin/etc/create list templates directory,
then the local profile will be used by WWSympa.

18.4 Creating and editing mailing using the web

The management of mailing lists is based on a strict definition of privileges which
pertain respectively to the listmaster, to the main list owner, and to basic list owners.
The goal is to allow each listmaster to define who can create lists, and which parameters
may be set by owners.

18.4.1 List creation on the Web interface

Listmasters are responsible for validating new mailing lists and, depending on the
configuration chosen, might be the only ones who can fill out the create list form.The
listmaster is defined in sympa.conf and others are defined at the virtual host level. By

164 CHAPITRE 18. LIST CREATION, EDITION AND REMOVAL

default, any authenticated user can request a list creation but newly created are then
validated by the listmaster.

List rejection message and list creation notification message are both templates that
you can customize (list rejected.tt2 and list created.tt2).

18.4.2 Who can create lists on the Web interface

This is defined by the create list sympa.conf parameter (see 7.1.15, page 51). This
parameter refers to a create list authorization scenario. It will determine if the create
list button is displayed and if it requires a listmaster confirmation.

The authorization scenario can accept any condition concerning the [sender] (i.e. WW-
Sympa user), and it returns reject, do it or listmaster as an action.

Only in cases where a user is authorized by the create list authorization scenario will
the ”create” button be available in the main menu. If the scenario returns do it, the list
will be created and installed. If the scenario returns ”listmaster”, the user is allowed to
create a list, but the list is created with the pending status, which means that only the
list owner may view or use it. The listmaster will need to open the list of pending lists
using the ”pending list” button in the ”server admin” menu in order to install or refuse
a pending list.

18.4.3 typical list profile and Web interface

As on command line creation, the list creator has to choose a list profile and to fill in the
owner’s e-mail and the list subject together with a short description. But in this case,
you don’t need any XML file. Concerning these typical list profiles, they are described
before, see 18.3, page 163. You can check available profile. On the Web interface,
another way to control publicly available profiles is to edit the create list.conf file
(the default for this file is in the /usr/local/sympa-stable/bin/etc directory, and
you may create your own customized version in /usr/local/sympa-stable/etc).
This file controls which of the available list templates are to be displayed. Example :

Do not allow the public_anonymous profile
public_anonymous hidden
* read

18.4.4 List edition

For each parameter, you may specify (via the
/usr/local/sympa-stable/etc/edit list.conf configuration file)

18.4. CREATING AND EDITING MAILING USING THE WEB 165

who has the right to edit the parameter concerned ; the default
/usr/local/sympa-stable/bin/etc/edit list.conf is reasonably safe.

Each line is a set of 3 field
<Parameter> <Population> <Privilege>
<Population> : <listmaster|privileged_owner|owner>
<Privilege> : <write|read|hidden>
parameter named "default" means any other parameter

There is no hierarchical relation between populations in this configuration file. You
need to explicitely list populations.

Eg : listmaster will not match rules refering to owner or privileged owner

examples :

only listmaster can edit user_data_source, priority, ...
user_data_source listmaster write

priority owner,privileged_owner read
priority listmaster write

only privileged owner can modify editor parameter, send, ...
editor privileged_owner write

send owner read
send privileged_owner,listmaster write

other parameters can be changed by simple owners
default owner write

Privileged owners are defined in the list’s config file as follows :

owner
email owners.email@foo.bar
profile privileged

The following rules are hard coded in WWSympa :
– only listmaster can edit the ”profile privileged” owner attribute
– owners can edit their own attributes (except profile and e-mail)
– the requestor creating a new list becomes a privileged owner
– privileged owners can edit any gecos/reception/info attribute of any owner
– privileged owners can edit owners’ e-mail addresses (but not privileged owners’ e-

mail addresses)
Sympa aims to define two levels of trust for owners (some being entitled simply to
edit secondary parameters such as ”custom subject”, others having the right to ma-
nage more important parameters), while leaving control of crucial parameters (such
as the list of privileged owners and user data sources) in the hands of the listmaster.

166 CHAPITRE 18. LIST CREATION, EDITION AND REMOVAL

Consequently, privileged owners can change owners’ e-mails, but they cannot grant the
responsibility of list management to others without referring to the listmaster.

Concerning list edition in a family context, see 19.2.8, page 174

18.5 Removing a list

You can remove a list either from the command line or using the web interface.

sympa.pl provides an option to remove a mailing list, see the example below :

sympa.pl –remove list=mylist@mydomain

Privileged owners can remove a mailing list through the list admin part of the web
interface. Removing the mailing list consists in removing its subscribers from the da-
tabase and setting its status to closed.Once removed, the list can still be restored by the
listmaster ; list members are saved in a subscribers.closed.dump file.

Chapitre 19

Lists Families

A list can have from three parameters to many tens of them. Some listmasters need to
create a set of lists that have the same profile. In order to simplify the apprehension
of these parameters, list families define a lists typology. Families provide a new level
for defaults : in the past, defaults in Sympa were global and most sites using Sympa
needed multiple defaults for different group of lists. Moreover families allow listmaster
to delegate a part of configuration list to owners, in a controlled way according to family
properties. Distribution will provide defaults families.

19.1 Family concept

A family provides a model for all of its lists. It is specified by the following characte-
ristics :

– a list creation template providing a common profile for each list configuration file.
– an degree of independence between the lists and the family : list parameters edition

rights and constraints on these parameters can be free (no constraint), controlled (a
set of available values is defined for these parameters) or fixed (the value for the
parameter is imposed by the family). That prevents lists from diverging from the
original and it allows list owner customizations in a controlled way.

– a filiation kept between lists and family all along the list life : family modifications
are applied on lists while keeping listowners customizations.

Here is a list of operation performed on a family :

– definition : definition of the list creation template, the degree of independence and
family customizations.

– instantiation : lists creation or modifications of existing lists while respecting family
properties. The set of data defining the lists is an XML document.

167

168 CHAPITRE 19. LISTS FAMILIES

– modification : modification of family properties. The modification is effective at the
next instantiation time, that have consequences on every list.

– closure : closure of each list.
– adding one list to a family.
– closing one family list.
– modifying one family list.

19.2 Using family

19.2.1 Definition

Families can be defined at the robot level, at the site level or on the distribution level
(where default families are provided). So, you have to create a sub directory named
after the family’s name in a families directory :

Examples :

/home/sympa/etc/families/my_family
/home/sympa/etc/my_robot/families/my_family

In this directory you must provide these files :
– config.tt2 (mandatory)
– param constraint.conf (mandatory)
– edit list.conf
– customizable files

config.tt2

This is a list creation template, this file is mandatory. It provides default values for
parameters. This file is an almost complete list configuration, with a number of missing
fields (such as owner e-mail) to be replaced by data obtained at the time of family
instantiation. It is easy to create new list templates by modifying existing ones. See
17.8, page 153 and 16.1, page 139.

Example :

subject [% subject %]

status [% status %]

[% IF topic %]
topics [% topic %]

[% END %]

19.2. USING FAMILY 169

visibility noconceal

send privateoreditorkey

web_archive
access public

subscribe open_notify

shared_doc
d_edit [% shared_edit %]
d_read [% shared_read %]

lang [% language %]

[% FOREACH o = owner %]
owner
email [% o.email %]
profile privileged
[% IF o.gecos %]
gecos [% o.gecos %]
[% END %]

[% END %]
[% IF moderator %]

[% FOREACH m = moderator %]
editor
email [% m.email %]

[% END %]
[% END %]

[% IF sql %]
include_sql_query
db_type [% sql.type %]
host [% sql.host %]
user [% sql.user %]
passwd [% sql.pwd %]
db_name [% sql.name %]
sql_query [% sql.query %]

[% END %]
ttl 360

170 CHAPITRE 19. LISTS FAMILIES

param constraint.conf

This file is obligatory. It defines constraints on parameters. There are three kind of
constraints :
– free parameters : no constraint on these parameters, they are not written in the
param constraint.conf file.

– controlled parameters : these parameters must select their values in a set of available
values indicated in the param constraint.conf file.

– fixed parameters : these parameters must have the imposed value indicated in the
param constraint.conf file.

The parameters constraints will be checked at every list loading.

WARNING : Some parameters cannot be constrained, they are :
msg topic.keywords (see 20.4.13, page 197),owner include.source parameter
(see 20.1.6, page 178), editor include.source parameter (see 20.1.2, page 176).
About digest parameter (see 20.4.9, page 196) , just days can be constrained.

Example :

lang fr,us
archive.period days,week,month
visibility conceal,noconceal
shared_doc.d_read public
shared_doc.d_edit editor

edit list.conf

This is an optional file. It defines which parameters/files are editable by owners. See
18.4.4, page 164. If the family does not have this file, Sympa will look for the one
defined on robot level, server site level or distribution level. (This file already exists
without family context)
Notes that by default parameter family name is not writable, you should not change
this edition right.

customizable files

Families provides a new level of customization for scenarios (see 13, page 125), tem-
plates for service messages (see 16.2, page 140) and templates for web pages (see 16.3
, page 142). Sympa looks for these files in the following level order : list, family, robot,
server site or distribution.

19.2. USING FAMILY 171

19.2.2 Instantiation

Instantiation permits to generate lists.You must provide an XML file that is composed
of lists description, the root element is family and is only composed of list elements.
List elements are described in section 18.1.2, page 160. Each list is described by the
set of values for affectation list parameters.

Here is an sample command to instantiate a family :

sympa.pl --instantiate_family my_family --robot \samplerobot --input_file /path/to/my_file.xml

This means lists that belong to family my family will be created under the robot
my robot and these lists are described in the file my file.xml. Sympa will split this
file into several xml files describing lists. Each list XML file is put in each list directory.

Example :

<?xml version="1.0" ?>
<family>
<list>
<listname>liste1</listname>
<subject>a list example</subject>
<description/>
<status>open</status>
<shared_edit>editor</shared_edit>
<shared_read>private</shared_read>
<language>fr</language>
<owner multiple="1">
<email>serge.aumont@cru.fr</email>
<gecos>C.R.U.</gecos>

</owner>
<owner multiple="1">
<email>olivier.salaun@cru.fr</email>

</owner>
<owner_include multiple="1">
<source>my_file</source>

</owner_include>
<sql>
<type>oracle</type>
<host>sqlserv.admin.univ-x.fr</host>
<user>stdutilisateur</user>
<pwd>monsecret</pwd>
<name>les_etudiants</name>
<query>SELECT DISTINCT email FROM etudiant</query>

</sql>
</list>
<list>
<listname>liste2</listname>
<subject>a list example</subject>
<description/>

172 CHAPITRE 19. LISTS FAMILIES

<status>open</status>
<shared_edit>editor</shared_edit>
<shared_read>private</shared_read>
<language>fr</language>
<owner multiple="1">
<email>serge.aumont@cru.fr</email>
<gecos>C.R.U.</gecos>

</owner>
<owner multiple="1">
<email>olivier.salaun@cru.fr</email>

</owner>
<owner_include multiple="1">
<source>my_file</source>

</owner_include>
<sql>
<type>oracle</type>
<host>sqlserv.admin.univ-x.fr</host>
<user>stdutilisateur</user>
<pwd>monsecret</pwd>
<name>les_etudiants</name>
<query>SELECT DISTINCT email FROM etudiant</query>

</sql>
</list>
...

</family>

Each instantiation describes lists. Compared to the previous instantiation, there are
three cases :
– lists creation : new lists described by the new instantiation
– lists modification : lists already existing but possibly changed because of changed

parameters values in the XML file or because of changed family’s properties.
– lists removal : lists nomore described by the new instantiation. In this case, the list-

master must valid his choice on command line. If the list is removed, it is set in status
family closed, or if the list is recovered, the list XML file from the previous ins-
tantiation is got back to go on as a list modification then.

After list creation or modification, parameters constraints are checked :
– fixed parameter : the value must be the one imposed.
– controlled parameter : the value must be one of the set of available values.
– free parameter : there is no checking.
diagram

In case of modification (see diagram), allowed customizations can be preserved :
– (1) : for every modified parameters (via Web interface), noted in the
config changes file, values can be collected in the old list configuration file, ac-
cording to new family properties :
– fixed parameter : the value is not collected.
– controlled parameter : the value is collected only if constraints are respected.
– free parameter : the value is collected.

– (2) : a new list configuration file is made with the new family properties
– (3) : collected values are set in the new list configuration file.

19.2. USING FAMILY 173

Notes :
– For each list problem (as family file error, error parameter constraint, error instan-

ciation ...), the list is set in status error config and the listmaster is notified. He
will have to do necessary to put list in use.

– For each list closing in family context, the list is set in status family closed and
the owner is notified.

– For each overwritten list customization, the owner is notified.

19.2.3 Modification

To modify a family, you have to edit family files manually. The modification will be
effective while the next instanciation.
WARNING : The family modification must be done just before an instantiation. If it is
not, alive lists wouldn’t respect new family properties and they would be set in status
error config immediately.

19.2.4 Closure

Closes every list (installed under the indicated robot) of this family : lists status are
set to family closed, aliases are removed and subscribers are removed from DB. (a
dump is created in the list directory to allow restoration of the list).

Here is a sample command to close a family :

sympa.pl --close_family my_family --robot \samplerobot

19.2.5 Adding one list

Adds a list to the family without instantiate all the family. The list is created as if it
was created during an instantiation, under the indicated robot. The XML file describes
the list and the root element is <list>. List elements are described in section 18.3,
page 163.

Here is a sample command to add a list to a family :

sympa.pl --add_list my_family --robot \samplerobot --input_file /path/to/my_file.xml

174 CHAPITRE 19. LISTS FAMILIES

19.2.6 Removing one list

Closes the list installed under the indicated robot : the list status is set to
family closed, aliases are removed and subscribers are removed from DB. (a dump
is created in the list directory to allow restoring the list).

Here is a sample command to close a list family (same as an orphan list) :

sympa.pl --close_list my_list@\samplerobot

19.2.7 Modifying one list

Modifies a family list without instantiating the whole family. The list (installed under
the indicated robot) is modified as if it was modified during an instantiation. The XML
file describes the list and the root element is <list>. List elements are described in
section 18.3, page 163.

Here is a sample command to modify a list to a family :

sympa.pl --modify_list my_family --robot \samplerobot --input_file /path/to/my_file.xml

19.2.8 List parameters edition in a family context

According to file edit list.conf, edition rights are controlled. See 18.4.4, page 164.
But in a family context, constraints parameters are added to edition right as it is sum-
marized in this array :

array

Note : In order to preserve list customization for instantiation, every modified parame-
ter (via the Web interface) is noted in the config changes file.

Chapitre 20

List configuration parameters

The configuration file is composed of paragraphs separated by blank lines and introdu-
ced by a keyword.

Even though there are a very large number of possible parameters, the minimal list
definition is very short. The only required parameters are owner (or owner include)
and subject. All other parameters have a default value.

keyword value

WARNING : configuration parameters must be separated by blank lines and BLANK
LINES ONLY !

20.1 List description

20.1.1 editor

The config file contains one editor paragraph per moderator (or editor). It concerns
static editor definition. For dynamic definition and more information about editors
see 20.1.2, page 176.

Example :

editor
email Pierre.David@prism.uvsq.fr
gecos Pierre (Universite de Versailles St Quentin)

175

176 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

Only the editor of a list is authorized to send messages to the list when the send para-
meter (see 20.3.8, page 190) is set to either editor, editorkey, or editorkeyonly.
The editor parameter is also consulted in certain other cases (privateoreditorkey
).

The syntax of this directive is the same as that of the owner parameter (see 20.1.5,
page 177), even when several moderators are defined.

20.1.2 editor include

The config file contains one editor include paragraph per data inclusion file
(see 17.7, page 152). It concerns dynamic editor definition : inclusion of external
data. For static editor definition and more information about moderation see 20.1.1,
page 175.

Example :

editor_include
reception mail
source myfile
source_parameters a,b,c

The syntax of this directive is the same as that of the owner include parameter
(see 20.1.6, page 178), even when several moderators are defined.

20.1.3 host

(Default value: domain robot parameter)

host fully-qualified-domain-name

Domain name of the list, default is the robot domain name set in the related
robot.conf file or in file /usr/local/sympa-stable/etc/sympa.conf.

20.1.4 lang

(Default value: lang robot parameter)

Example :

lang en_US

20.1. LIST DESCRIPTION 177

This parameter defines the language used for the list. It is used to initialize a user’s lan-
guage preference ; Sympa command reports are extracted from the associated message
catalog.

See 16.4, page 142 for available languages.

20.1.5 owner

The config file contains one owner paragraph per owner. It concerns static owner
definition. For dynamic definition see 20.1.6, page 178.

Example :

owner
email serge.aumont@cru.fr
gecos C.R.U.
info Tel: 02 99 76 45 34
reception nomail

The list owner is usually the person who has the authorization to send ADD (see 27.2,
page 230) and DELETE (see 27.2, page 230) commands on behalf of other users.

When the subscribe parameter (see 20.3.1, page 187) specifies a restricted list, it is
the owner who has the exclusive right to subscribe users, and it is therefore to the owner
that SUBSCRIBE requests will be forwarded.

There may be several owners of a single list ; in this case, each owner is declared in a
paragraph starting with the owner keyword.

The owner directive is followed by one or several lines giving details regarding the
owner’s characteristics :

– email address
Owner’s e-mail address

– reception nomail
Optional attribute for an owner who does not wish to receive mails. Useful to de-
fine an owner with multiple e-mail addresses : they are all recognized when Sympa
receives mail, but thanks to reception nomail, not all of these addresses need
receive administrative mail from Sympa.

– gecos data
Public information on the owner

– info data
Available since release 2.3
Private information on the owner

– profile privileged | normal

178 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

Available since release 2.3.5
Profile of the owner. This is currently used to restrict access to some features of
WWSympa, such as adding new owners to a list.

20.1.6 owner include

The config file contains one owner include paragraph per data inclusion file
(see 17.7, page 152. It concerns dynamic owner definition : inclusion of external data.
For static owner definition and more information about owners see 20.1.5, page 177.

Example :

owner_include
source myfile
source_parameters a,b,c
reception nomail
profile normal

The owner include directive is followed by one or several lines giving details regar-
ding the owner(s) included characteristics :

– source myfile
This is an mandatory field : it indicates the data inclusion file myfile.incl (but decla-
red myfile). This file can be a template. In this case, it will be interpreted with values
given by subparameter source parameter.

– source parameters a,b,c
It contains values enumeration that will be affected to the param array used in the
template file (see 17.7, page 152). This parameter is uncompellable.

– reception nomail
Optional attribute for owner(s) who does not wish to receive mails.

– profile privileged | normal
Profile of the owner(s).

20.1.7 subject

subject subject-of-the-list

This parameter indicates the subject of the list, which is sent in response to the LISTS
mail command. The subject is a free form text limited to one line.

20.2. DATA SOURCE RELATED 179

20.1.8 topics

topics computing/internet,education/university

This parameter allows the classification of lists. You may define multiple topics as well
as hierarchical ones. WWSympa’s list of public lists uses this parameter. This parameter
is different from (msg topic) parameter used to tag mails.

20.1.9 visibility

(Default value: conceal)

visibility parameter is defined by an authorization scenario (see 13, page 125)

This parameter indicates whether the list should feature in the output generated in res-
ponse to a LISTS command.

– visibility conceal

– visibility intranet

– visibility noconceal

– visibility secret

20.2 Data source related

20.2.1 user data source

(Default value: file|database, if using an RDBMS)

user data source file | database | include | include2

Sympa allows the mailing list manager to choose how Sympa loads subscriber and
administartive data. User information can be stored in a text file or relational database,
or included from various external sources (list, flat file, result of LDAP or SQL query).

– user data source file
When this value is used, subscriber data are stored in a file whose name is defined
by the subscribers parameter in sympa.conf. This is maintained for backward

180 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

compatibility.
– user data source database

This mode was been introduced to enable data to be stored in a relational database.
This can be used for instance to share subscriber data with an HTTP interface, or
simply to facilitate the administration of very large mailing lists. It has been tested
with MySQL, using a list of 200 000 subscribers. We strongly recommend the use
of a database in place of text files. It will improve performance, and solve possible
conflicts between Sympa and WWSympa. Please refer to the ¨Sympaand its data-
bases̈ection (8, page 73).

– user data source include
Here, subscribers are not defined extensively (enumeration of their e-mail addresses)
but intensively (definition of criteria subscribers must satisfy). Includes can be per-
formed by extracting e-mail addresses using an SQL or LDAP query, or by inclu-
ding other mailing lists. At least one include paragraph, defining a data source, is
needed. Valid include paragraphs (see below) are include file, include list,
include remote sympa list, include sql query and include ldap query.

– user data source include2
This is a replacement for the include mode. In this mode, the members cache is no
more maitained in a DB FIle but in the main database instead. The behavior of the
cache is detailed in the database chapter (see 8.6, page 84). This is the only mode
that run the database for administrative data in the database

20.2.2 ttl

(Default value: 3600)

ttl delay in seconds

Sympa caches user data extracted using the include parameter. Their TTL (time-to-live)
within Sympa can be controlled using this parameter. The default value is 3600.

20.2.3 include list

include list listname

This parameter will be interpreted only if user data source is set to include or
include2. All subscribers of list listname become members of the current list. You
may include as many lists as required, using one include list listname line for
each included list. Any list at all may be included ; the user data source definition
of the included list is irrelevant, and you may therefore include lists which are also
defined by the inclusion of other lists. Be careful, however, not to include list A in list
B and then list B in list A, since this will give rise an infinite loop.

Example: include list local-list

20.2. DATA SOURCE RELATED 181

Example: include list other-local-list@other-local-robot

20.2.4 include remote sympa list

include remote sympa list

Sympa can contact another Sympa service using https to fetch a remote list in order to
include each member of a remote list as subscriber. You may include as many lists as
required, using one include remote sympa list paragraph for each included list.
Be careful, however, not to give rise an infinite loop making cross includes.

For this operation, one Sympa site act as a server while the other one act as client. On
the server side, the only setting needed is to give permition to the remote Sympa to
review the list. This is controled by the review authorization scenario.

From the client side you must define the remote list dump URI.

– remote host remote host name
– port port (Default 443)
– path absolute path (In most cases, for a list name foo /sympa/dump/foo)

Because https offert a easy and secure client authentication, https is the only one proto-
cole currently supported. A additional parameter is needed : the name of the certificate
(and the private key) to be used :

– cert list the certificate to be use is the list certificate (the certificate subject distin-
guished name email is the list adress). Certificate and private key are located in the
list directory.

– cert robot the certificate used is then related to sympa itself : the cer-
tificate subject distinguished name email look like sympa@my.domain and
files are located in virtual host etc dir if virtual host is used otherwise in
/usr/local/sympa-stable/etc.

20.2.5 include sql query

include sql query

This parameter will be interpreted only if the user data source value is set to
include, and is used to begin a paragraph defining the SQL query parameters :

– db type dbd name
The database type (mysql, SQLite, Pg, Oracle, Sybase, CSV ...). This value identifies
the PERL DataBase Driver (DBD) to be used, and is therefore case-sensitive.

182 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

– host hostname
The Database Server Sympa will try to connect to.

– db port port
If not using the default RDBMS port, you can specify it.

– db name sympa db name
The hostname of the database system.

– user user id
The user id to be used when connecting to the database.

– passwd some secret
The user passwd for user.

– sql query a query string The SQL query string. No fields other than e-mail ad-
dresses should be returned by this query !

– connect options option1=x ;option2=y
This parameter is optional and specific to each RDBMS.
These options are appended to the connect string.
Example :

include_sql_query
db_type mysql
host sqlserv.admin.univ-x.fr
user stduser
passwd mysecret
db_name studentbody
sql_query SELECT DISTINCT email FROM student
connect_options mysql_connect_timeout=5

Connexion timeout is set to 5 seconds.
– db env list of var def

This parameter is optional ; it is needed for some RDBMS (Oracle).
Sets a list of environment variables to set before database connexion. This is a ’ ;’
separated list of variable assignment.
Example for Oracle :

db_env ORACLE_TERM=vt100;ORACLE_HOME=/var/hote/oracle/7.3.4

– name short name
This parameter is optional.
It provides a human-readable name to this datasource. It will be used within the
REVIEW page to indicate what datasource each list member comes from (usefull
when having multiple data sources).

– f dir /var/csvdir
This parameter is optional, only used when accessing a CSV datasource.
When connecting to a CSV datasource, this parameter indicates the directory where
the CSV files are located.

Example :

include_sql_query
db_type oracle
host sqlserv.admin.univ-x.fr

20.2. DATA SOURCE RELATED 183

user stduser
passwd mysecret
db_name studentbody
sql_query SELECT DISTINCT email FROM student

20.2.6 include ldap query

include ldap query

This paragraph defines parameters for a LDAP query returning a list of subscribers.
This paragraph is used only if user data source is set to include. This feature
requires the Net : :LDAP (perlldap) PERL module.

– host ldap directory hostname
Name of the LDAP directory host or a comma separated list of host :port. The second
form is usefull if you are using some replication ldap host.
Example :

host ldap.cru.fr:389,backup-ldap.cru.fr:389

– port ldap directory port (OBSOLETE)
Port on which the Directory accepts connections.

– user ldap user name
Username with read access to the LDAP directory.

– passwd LDAP user password
Password for user.

– suffix directory name
Defines the naming space covered by the search (optional, depending on the LDAP
server).

– timeout delay in seconds
Timeout when connecting the remote server.

– filter search filter
Defines the LDAP search filter (RFC 2254 compliant).

– attrs mail attribute (Default value: mail)
The attribute containing the e-mail address(es) in the returned object.

– select first | all (Default value: first)
Defines whether to use only the first address, or all the addresses, in cases where
multiple values are returned.

– scope base | one | sub (Default value: sub)
By default the search is performed on the whole tree below the specified base object.
This may be changed by specifying a scope parameter with one of the following
values.
– base : Search only the base object.
– one : Search the entries immediately below the base object.
– sub : Search the whole tree below the base object.

184 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

Example :

include_ldap_query
host ldap.cru.fr
suffix dc=cru, dc=fr
timeout 10
filter (&(cn=aumont) (c=fr))
attrs mail
select first
scope one

20.2.7 include ldap 2level query

include ldap 2level query

This paragraph defines parameters for a two-level LDAP query returning a list of
subscribers. Usually the first-level query returns a list of DNs and the second-
level queries convert the DNs into e-mail addresses. This paragraph is used only if
user data source is set to include. This feature requires the Net : :LDAP (perll-
dap) PERL module.

– host ldap directory hostname
Name of the LDAP directory host or a comma separated list of host :port. The second
form is usefull if you are using some replication ldap host.
Example :

host ldap.cru.fr:389,backup-ldap.cru.fr:389

– port ldap directory port (OBSOLETE)
Port on which the Directory accepts connections (this parameter is ignored if host
definition include port specification).

– user ldap user name
Username with read access to the LDAP directory.

– passwd LDAP user password
Password for user.

– suffix1 directory name
Defines the naming space covered by the first-level search (optional, depending on
the LDAP server).

– timeout1 delay in seconds
Timeout for the first-level query when connecting to the remote server.

– filter1 search filter
Defines the LDAP search filter for the first-level query (RFC 2254 compliant).

– attrs1 attribute
The attribute containing the data in the returned object that will be used for the
second-level query. This data is referenced using the syntax “[attrs1]”.

20.2. DATA SOURCE RELATED 185

– select1 first | all | regex (Default value: first)
Defines whether to use only the first attribute value, all the values, or only those
values matching a regular expression.

– regex1 regular expression (Default value:)
The Perl regular expression to use if “select1” is set to “regex”.

– scope1 base | one | sub (Default value: sub)
By default the first-level search is performed on the whole tree below the specified
base object. This may be changed by specifying a scope parameter with one of the
following values.
– base : Search only the base object.
– one : Search the entries immediately below the base object.
– sub : Search the whole tree below the base object.

– suffix2 directory name
Defines the naming space covered by the second-level search (optional, depending
on the LDAP server). The “[attrs1]” syntax may be used to substitute data from the
first-level query into this parameter.

– timeout2 delay in seconds
Timeout for the second-level queries when connecting to the remote server.

– filter2 search filter
Defines the LDAP search filter for the second-level queries (RFC 2254 compliant).
The “[attrs1]” syntax may be used to substitute data from the first-level query into
this parameter.

– attrs2 mail attribute (Default value: mail)
The attribute containing the e-mail address(es) in the returned objects from the
second-level queries.

– select2 first | all | regex (Default value: first)
Defines whether to use only the first address, all the addresses, or only those ad-
dresses matching a regular expression in the second-level queries.

– regex2 regular expression (Default value:)
The Perl regular expression to use if “select2” is set to “regex”.

– scope2 base | one | sub (Default value: sub)
By default the second-level search is performed on the whole tree below the specified
base object. This may be changed by specifying a scope2 parameter with one of the
following values.
– base : Search only the base object.
– one : Search the entries immediately below the base object.
– sub : Search the whole tree below the base object.

Example : (cn=testgroup,dc=cru,dc=fr should be a groupOfUniqueNames here)

include_ldap_2level_query
host ldap.univ.fr
port 389
suffix1 ou=Groups,dc=univ,dc=fr
scope1 one
filter1 (&(objectClass=groupOfUniqueNames) (| (cn=cri)(cn=ufrmi)))
attrs1 uniquemember
select1 all

186 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

suffix2 [attrs1]
scope2 base
filter2 (objectClass=n2pers)
attrs2 mail
select2 first

20.2.8 include file

include file path to file

This parameter will be interpreted only if the user data source value is set to
include. The file should contain one e-mail address per line with an optional user
description, separated from the email address by spaces (lines beginning with a ”#” are
ignored).

Sample included file :

Data for Sympa member import
john.smith@sample.edu John Smith - math department
sarah.hanrahan@sample.edu Sarah Hanrahan - physics department

20.2.9 include remote file

include remote file

This parameter (organized as a paragraph) does the same as the include file
parameter, except that it gets a remote file. This paragraph is used only if
user data source is set to include. Using this method you should be able to in-
clude any exotic data source that is not supported by Sympa. The paragraph is made of
the following entries :

– url url of remote file
This is the URL of the remote file to include.

– user user name
This entry is optional, only used if HTTP basic authentication is required to access
the remote file.

– passwd user passwd
This entry is optional, only used if HTTP basic authentication is required to access
the remote file.

Example :

20.3. COMMAND RELATED 187

include_remote_file
url http://www.myserver.edu/myfile
user john_netid
passwd john_passwd

20.3 Command related

20.3.1 subscribe

(Default value: open)

subscribe parameter is defined by an authorization scenario (see 13, page 125)

The subscribe parameter defines the rules for subscribing to the list. Predefined au-
thorization scenarios are :

– subscribe auth

– subscribe auth notify

– subscribe auth owner

– subscribe closed

– subscribe intranet

– subscribe intranetorowner

– subscribe open

– subscribe open notify

– subscribe open quiet

– subscribe owner

– subscribe smime

– subscribe smimeorowner

188 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

20.3.2 unsubscribe

(Default value: open)

unsubscribe parameter is defined by an authorization scenario (see 13, page 125)

This parameter specifies the unsubscription method for the list. Use open notify or
auth notify to allow owner notification of each unsubscribe command. Predefined
authorization scenarios are :

– unsubscribe auth

– unsubscribe auth notify

– unsubscribe closed

– unsubscribe open

– unsubscribe open notify

– unsubscribe owner

20.3.3 add

(Default value: owner)

add parameter is defined by an authorization scenario (see 13, page 125)

This parameter specifies who is authorized to use the ADD command. Predefined autho-
rization scenarios are :

– add auth

– add closed

– add owner

– add owner notify

20.3. COMMAND RELATED 189

20.3.4 del

(Default value: owner)

del parameter is defined by an authorization scenario (see 13, page 125)

This parameter specifies who is authorized to use the DEL command. Predefined autho-
rization scenarios are :

– del auth

– del closed

– del owner

– del owner notify

20.3.5 remind

(Default value: owner)

remind parameter is defined by an authorization scenario (see 13, page 125)

This parameter specifies who is authorized to use the remind command. Predefined
authorization scenarios are :

– remind listmaster

– remind owner

20.3.6 remind task

(Default value: no default value)

This parameter states which model is used to create a remind task. A remind task
regurlaly sends to the subscribers a message which reminds them their subscription to
list.

example :

remind annual

190 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

20.3.7 expire task

(Default value: no default value)

This parameter states which model is used to create a remind task. A expire task
regurlaly checks the inscription or reinscription date of subscribers and asks them to
renew their subscription. If they don’t they are deleted.

example :

expire annual

20.3.8 send

(Default value: private)

send parameter is defined by an authorization scenario (see 13, page 125)

This parameter specifies who can send messages to the list. Valid values for this para-
meter are pointers to scenarios.

– send closed

– send editorkey

– send editorkeyonly

– send editorkeyonlyauth

– send intranet

– send intranetorprivate

– send newsletter

– send newsletterkeyonly

– send private

– send private smime

– send privateandeditorkey

– send privateandnomultipartoreditorkey

20.3. COMMAND RELATED 191

– send privatekey

– send privatekeyandeditorkeyonly

– send privateoreditorkey

– send privateorpublickey

– send public

– send public nobcc

– send publickey

– send publicnoattachment

– send publicnomultipart

20.3.9 review

(Default value: owner)

review parameter is defined by an authorization scenario (see 13, page 125)

This parameter specifies who can use REVIEW (see 27.1, page 228), administrative re-
quests.

Predefined authorization scenarios are :

– review closed

– review intranet

– review listmaster

– review owner

– review private

– review public

192 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

20.3.10 shared doc

This paragraph defines read and edit access to the shared document repository.

d read

(Default value: private)

d read parameter is defined by an authorization scenario (see 13, page 125)

This parameter specifies who can read shared documents (access the contents of a list’s
shared directory).

Predefined authorization scenarios are :

– d read owner

– d read private

– d read p

– d read public

d edit

(Default value: owner)

d edit parameter is defined by an authorization scenario (see 13, page 125)

This parameter specifies who can perform changes within a list’s shared directory (i.e.
upload files and create subdirectories).

Predefined authorization scenarios are :

– d edit editor

– d edit owner

– d edit private

– d edit p

20.4. LIST TUNING 193

– d edit public

Example :

shared_doc
d_read public
d_edit private

quota

quota number-of-Kbytes

This parameter specifies the disk quota (the unit is Kbytes) for the document repository,
in kilobytes. If quota is exceeded, file uploads fail.

20.4 List tuning

20.4.1 reply to header

The reply to header parameter starts a paragraph defining what Sympa will place in
the Reply-To: SMTP header field of the messages it distributes.

– value sender | list | all | other email (Default value: sender)
This parameter indicates whether the Reply-To: field should indicate the sender of
the message (sender), the list itself (list), both list and sender (all) or an arbitrary
e-mail address (defined by the other email parameter).
Note : it is inadvisable to change this parameter, and particularly inadvisable to set
it to list. Experience has shown it to be almost inevitable that users, mistakenly
believing that they are replying only to the sender, will send private messages to
a list. This can lead, at the very least, to embarrassment, and sometimes to more
serious consequences.

– other email an email address
If value was set to other email, this parameter defines the e-mail address used.

– apply respect | forced (Default value: respect)
The default is to respect (preserve) the existing Reply-To: SMTP header field in
incoming messages. If set to forced, Reply-To: SMTP header field will be over-
written.

Example :

reply_to_header
value other_email
other_email listowner@my.domain

194 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

apply forced

20.4.2 max size

(Default value: max size robot parameter)

max size number-of-bytes

Maximum size of a message in 8-bit bytes. The default value is set in the
/usr/local/sympa-stable/etc/sympa.conf file.

20.4.3 anonymous sender

anonymous sender value

If this parameter is set for a list, all messages distributed via the list are rendered anony-
mous. SMTP From : headers in distributed messages are altered to contain the value
of the anonymous sender parameter. Various other fields are removed (Received :,
Reply-To :, Sender :, X-Sender :, Message-id :, Resent-From :

20.4.4 custom header

custom header header-field : value

This parameter is optional. The headers specified will be added to the headers of mes-
sages distributed via the list. As of release 1.2.2 of Sympa, it is possible to put several
custom header lines in the configuration file at the same time.

Example: custom header X-url : http ://www.cru.fr/listes/apropos/sedesabonner.faq.html.

20.4.5 rfc2369 header fields

(Default value: rfc2369 header fields sympa.conf parameter)
rfc2369 header fields help,archive

RFC2369 compliant header fields (List-xxx) to be added to distributed messages. These
header-fields should be implemented by MUA’s, adding menus.

20.4. LIST TUNING 195

20.4.6 loop prevention regex

(Default value: loop prevention regex sympa.conf parameter)
loop prevention regexmailer-daemon—sympa—listserv—majordomo—smartlist—mailman

This regular expression is applied to messages sender address. If the sender address
matches the regular expression, then the message is rejected. The goal of this parameter
is to prevent loops between Sympa and other robots.

20.4.7 custom subject

custom subject value

This parameter is optional. It specifies a string which is added to the subject of distribu-
ted messages (intended to help users who do not use automatic tools to sort incoming
messages). This string will be surrounded by [] characters.

The custom subject can also refer to list variables ([list-¿sequence] in the example
bellow).

Example: custom subject sympa-users.

Example: custom subject newsletter num [list->sequence].

20.4.8 footer type

(Default value: mime)

footer type (optional, default value is mime) mime | append

List owners may decide to add message headers or footers to messages sent via the list.
This parameter defines the way a footer/header is added to a message.

– footer type mime
The default value. Sympa will add the footer/header as a new MIME part. If the mes-
sage is in multipart/alternative format, no action is taken (since this would require
another level of MIME encapsulation).

– footer type append
Sympa will not create new MIME parts, but will try
to append the header/footer to the body of the message.
/usr/local/sympa-stable/expl/mylist/message.footer.mime will
be ignored. Headers/footers may be appended to text/plain messages only.

196 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

20.4.9 digest

digest daylist hour :minutes

Definition of digest mode. If this parameter is present, subscribers can select the op-
tion of receiving messages in multipart/digest MIME format. Messages are then grou-
ped together, and compilations of messages are sent to subscribers in accordance with
the rythm selected with this parameter.

Daylist designates a list of days in the week in number format (from 0 for Sunday to 6
for Saturday), separated by commas.

Example: digest 1,2,3,4,5 15 :30

In this example, Sympa sends digests at 3 :30 PM from Monday to Friday.

WARNING : if the sending time is too late, Sympa may not be able to process it. It
is essential that Sympa could scan the digest queue at least once between the time laid
down for sending the digest and 12 :00 AM (midnight). As a rule of thumb, do not use
a digest time later than 11 :00 PM.

N.B. : In family context, digest can be constrainted only on days.

20.4.10 digest max size

(Default value: 25)

Maximum number of messages in a digest. If the number of messages exceeds this
limit, then multiple digest messages are sent to each recipient.

20.4.11 available user options

The available user options parameter starts a paragraph to define available op-
tions for the subscribers of the list.

– reception modelist
(Default value: reception mail,notice,digest,summary,nomail)
modelist is a list of modes (mail, notice, digest, summary, nomail), separated by
commas. Only these modes will be allowed for the subscribers of this list. If a sub-
scriber has a reception mode not in the list, sympa uses the mode specified in the
default user options paragraph.

Example :

20.4. LIST TUNING 197

Nomail reception mode is not available
available_user_options
reception digest,mail

20.4.12 default user options

The default user options parameter starts a paragraph to define a default profile
for the subscribers of the list.

– reception notice | digest | summary | nomail | mail
Mail reception mode.

– visibility conceal | noconceal
Visibility of the subscriber with the REVIEW command.

Example :

default_user_options
reception digest
visibility noconceal

20.4.13 msg topic

The msg topic parameter starts a paragraph to define a message topic used to tag
a message. Foreach message topic, you have to define a new paragraph.(See 21.1,
page 205)

Example :

msg_topic
name os
keywords linux,mac-os,nt,xp
title Operating System

Parameter msg topic.name and msg topic.title are mandatory.
msg topic.title is used on the web interface (“other” is not allowed for
msg topic.name parameter). The msg topic.keywords parameter allows to select
automatically message topic by searching keywords in the message.

N.B. : In a family context, msg topic.keywords parameter is uncompellable.

20.4.14 msg topic keywords apply on

The msg topic keywords apply on parameter defines on which part of the message
is used to perform automatic tagging.(See 21.1, page 205)

198 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

Example :

msg_topic_key_apply_on subject

Its values can be : subject | body| subject and body.

20.4.15 msg topic tagging

The msg topic tagging parameter indicates if the tagging is optional or required for
a list. (See 21.1, page 205)

Example :

msg_topic_tagging optional

Its values can be : optional | required

20.4.16 cookie

(Default value: cookie robot parameter)

cookie random-numbers-or-letters

This parameter is a confidential item for generating authentication keys for administra-
tive commands (ADD, DELETE, etc.). This parameter should remain concealed, even for
owners. The cookie is applied to all list owners, and is only taken into account when
the owner has the auth parameter (owner parameter, see 20.1.5, page 177).

Example: cookie secret22

20.4.17 priority

(Default value: default list priority robot parameter)

priority 0-9

The priority with which Sympa will process messages for this list. This level of priority
is applied while the message is going through the spool.

0 is the highest priority. The following priorities can be used : 0...9 z. z is a special
priority causing messages to remain spooled indefinitely (useful to hang up a list).

Available since release 2.3.1.

20.5. BOUNCE RELATED 199

20.5 Bounce related

20.5.1 bounce

This paragraph defines bounce management parameters :

– warn rate
(Default value: bounce warn rate robot parameter)
The list owner receives a warning whenever a message is distributed and the number
(percentage) of bounces exceeds this value.

– halt rate
(Default value: bounce halt rate robot parameter)
NOT USED YET
If bounce rate reaches the halt rate, messages for the list will be halted, i.e. they
are retained for subsequent moderation. Once the number of bounces exceeds this
value, messages for the list are no longer distributed.

– expire bounce task
(Default value: d)aily
Name of the task template use to remove old bounces. Usefull to remove bounces for
a subscriber email if some message are distributed without receiving new bounce. In
this case, the subscriber email seems to be OK again. Active if task manager.pl is
running.

Example :

Owners are warned with 10% bouncing addresses
message distribution is halted with 20% bouncing rate
bounce
warn_rate 10
halt_rate 20

20.5.2 bouncers level1

– rate
(Default value: bouncers level1 rate config parameter)
Each bouncing user have a score (from 0 to 100).This parameter define the lower
score for a user to be a l̈evel1 bouncing user.̈ For example, with default values :
Users with a score between 45 and 80 are level1 bouncers.

– action
(Default value: bouncers level1 action config parameter)
This parameter define which task is automaticaly applied on level 1 bouncing users :
for exemple, automaticaly notify all level1 users.

– Notification
(Default value: owner)

200 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

When automatic task is executed on level 1 bouncers, a notification email can be
send to listowner or listmaster. This email contain the adresses of concerned users
and the name of the action executed.

20.5.3 bouncers level2

– rate
(Default value: bouncers level2 rate config parameter)
Each bouncing user have a score (from 0 to 100).This parameter define the lower
score for a user to be a l̈evel 2 bouncing user.̈ For example, with default values :
Users with a score between 75 and 100 are level 2 bouncers.

– action
(Default value: bouncers level1 action config parameter)
This parameter define which task is automaticaly applied on level 2 bouncing users :
for exemple, automaticaly notify all level1 users.

– Notification
(Default value: owner)
When automatic task is executed on level 2 bouncers, a notification email can be
send to listowner or listmaster. This email contain the adresses of concerned users
and the name of the action executed.

Example :

All bouncing adresses with a score between 75 and 100
will be unsubscribed, and listmaster will recieve an email
Bouncers level 2
rate :75 Points
action : remove_bouncers
Notification : Listmaster

20.5.4 welcome return path

(Default value: welcome return path robot parameter) welcome return path
unique | owner

If set to unique, the welcome message is sent using a unique return path in order to re-
move the subscriber immediately in the case of a bounce. See welcome return path
sympa.conf parameter (7.8.2, page 62).

20.6. ARCHIVE RELATED 201

20.5.5 remind return path

(Default value: remind return path robot parameter) remind return path
unique | owner

Same as welcome return path, but applied to remind messages. See
remind return path sympa.conf parameter (7.8.3, page 62).

20.6 Archive related

Sympa maintains 2 kinds of archives : mail archives and web archives.

Mail archives can be retrieved via a mail command send to the robot, they are stored in
/usr/local/sympa-stable/expl/mylist/archives/ directory.

Web archives are accessed via the web interface (with access control), they are stored
in a directory defined in wwsympa.conf.

20.6.1 archive

If the config file contains an archive paragraph Sympa will manage an archive for
this list.

Example :

archive
period week
access private

If the archive parameter is specified, archives are accessible to users through the GET
command, and the index of the list archives is provided in reply to the INDEX command
(the last message of a list can be consulted using the LAST command).

period day | week | month | quarter | year

This parameter specifies how archiving is organized : by day, week,
month, quarter, or year. Generation of automatic list archives re-
quires the creation of an archive directory at the root of the list directory
(/usr/local/sympa-stable/expl/mylist/archives/), used to store these
documents.

202 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

access private | public | owner | closed |

This parameter specifies who is authorized to use the GET, LAST and INDEX commands.

20.6.2 web archive

If the config file contains a web archive paragraph Sympa will copy all messages
distributed via the list to the ”queueoutgoing” spool. It is intended to be used with WW-
Sympa html archive tools. This paragraph must contain at least the access parameter to
control who can browse the web archive.

Example :

web_archive
access private
quota 10000

access

access web archive parameter is defined by an authorization scenario (see 13,
page 125)

Predefined authorization scenarios are :

– access closed

– access intranet

– access listmaster

– access owner

– access private

– access public

quota

quota number-of-Kbytes

This parameter specifies the disk quota for the list’s web archives, in kilobytes. This

20.7. SPAM PROTECTION 203

parameter’s default is default archive quota sympa.conf parameter. If quota is
exceeded, messages are no more archived, list owner is notified. When archives are
95% full, the list owner is warned.

20.6.3 archive crypted msg

(Default value: cleartext)

archive crypted msg cleartext | decrypted

This parameter defines Sympa behavior while archiving S/MIME crypted messages. If
set to cleartext the original crypted form of the message will be archived ; if set to
decrypted a decrypted message will be archived. Note that this apply to both mail
and web archives ; also to digests.

20.7 Spam protection

20.7.1 spam protection

(Default value: spam protection robot parameter)

There is a need to protection Sympa web site against spambot which collect email
adresse in public web site. Various method are availible into Sympa and you can choose
it with spam protection and web archive spam protection parameters. Possible
value are :
– javascript : the adresse is hidden using a javascript. User who enable javascript can

see a nice mailto adresses where others have nothing.
– at : the @ char is replaced by the string ” AT ”.
– none : no protection against spammer.

20.7.2 web archive spam protection

(Default value: web archive spam protection robot parameter)

Idem spam protection but restricted to web archive. A additional value is available :
cookie which mean that users must submit a small form in order to receive a cookie
before browsing archives. This block all robot, even google and co.

204 CHAPITRE 20. LIST CONFIGURATION PARAMETERS

20.8 Intern parameters

20.8.1 family name

This parameter indicates the name of the family that the list belongs to.

Example :

family_name my_family

20.8.2 latest instantiation

This parameter indicates the date of the latest instantiation.

Example :

latest_instantiation
email serge.aumont@cru.fr
date 27 jui 2004 at 09:04:38
date_epoch 1090911878

Chapitre 21

Reception mode

21.1 Message topics

A list can be configured to have message topics (this notion is different from topics used
to class mailing lists). Users can subscribe to these message topics in order to receive a
subset of distributed messages : a message can have one or more topics and subscribers
will receive only messages that have been tagged with a topic they are subscribed to. A
message can be tagged automatically, by the message sender or by the list moderator.

21.1.1 Message topic definition in a list

Available message topics are defined by list parameters. Foreach new message topic,
create a new msg topic paragraph that defines the name and the title of the topic. If a
thread is identified for the current message then the automatic procedure is performed.
Else, to use automatic tagging, you should define keywords (See (20.4.13, page 197)
To define which part of the message is used for automatic tagging you have to define
msg topic keywords apply on list parameter (See 20.4.14, page 197). Tagging a
message can be optional or it can be required, depending on the msg topic tagging
list parameter (See (20.4.15,page 198).

21.1.2 Subscribing to message topic for list subscribers

This functionnality is only available via “normal” reception mode. Subscribers can
select message topic to receive messages tagged with this topic. To receive messages
that were not tagged, users can subscribe to the topic “other”. Message topics selected
by a subscriber are stored in Sympa database (subscriber table table).

205

206 CHAPITRE 21. RECEPTION MODE

21.1.3 Message tagging

First of all, if one or more msg topic.keywords are defined, Sympa tries to tag mes-
sages automatically. To trigger manual tagging, by message sender or list modera-
tor, on the web interface, Sympa uses authorization scenarios : if the resulted action
is “editorkey” (for example in scenario send.editorkey), the list moderator is asked
to tag the message. If the resulted action is “request auth” (for example in scenario
send.privatekey), the message sender is asked to tag the message. The following va-
riables are available as scenario variables to customize tagging : topic, topic-sender,
topic-editor, topic-auto, topic-needed. (See (13, page 125) If message tagging is requi-
red and if it was not yet performed, Sympa will ask to the list moderator.

Tagging a message will create a topic information file in the
/usr/local/sympa-stable/spool/topic/ spool. Its name is based on the
listname and the Message-ID. For message distribution, a “X-Sympa-Topic” field is
added to the message to allow members to use mail filters.

Chapitre 22

Shared documents

Shared documents are documents that different users can manipulate on-line via the
web interface of Sympa, provided that the are authorized to do so. A shared space is
associated with a list, and users of the list can upload, download, delete, etc, documents
in the shared space.

WWSympa shared web features are fairly rudimentary. It is not our aim to provide a
sophisticated tool for web publishing, such as are provided by products like Rearsite. It
is nevertheless very useful to be able to define privilege on web documents in relation
to list attributes such as subscribers, list owners, or list editors.

All file and directory names are lowercased by Sympa. It is consequently impossible
to create two different documents whose names differ only in their case. The reason
Sympa does this is to allow correct URL links even when using an HTML document
generator (typically Powerpoint) which uses random case for file names !

In order to have better control over the documents and to enforce security in the shared
space, each document is linked to a set of specific control information : its access rights.

A list’s shared documents are stored in the
/usr/local/sympa-stable/expl/mylist/shared directory.

This chapter describes how the shared documents are managed, especially as regards
their access rights. We shall see :

– the kind of operations which can be performed on shared documents
– access rights management
– access rights control specifications
– actions on shared documents
– template files

207

208 CHAPITRE 22. SHARED DOCUMENTS

22.1 The three kind of operations on a document

Where shared documents are concerned, there are three kinds of operation which have
the same constraints relating to access control :
– The read operation :

– If applied on a directory, opens it and lists its contents (only those sub-documents
the user is authorized to “see”).

– If applied on a file, downloads it, and in the case of a viewable file (text/plain,
text/html, or image), displays it.

– The edit operation allows :

– Subdirectory creation
– File uploading
– File unzipping
– Description of a document (title and basic information)
– On-line editing of a text file
– Document (file or directory) removal. If on a directory, it must be empty.
These different edit actions are equivalent as regards access rights. Users who are
authorized to edit a directory can create a subdirectory or upload a file to it, as well
as describe or delete it. Users authorized to edit a file can edit it on-line, describe it,
replace or remove it.

– The control operation :
The control operation is directly linked to the notion of access rights. If we wish
shared documents to be secure, we have to control the access to them. Not every-
body must be authorized to do everything to them. Consequently, each document
has specific access rights for reading and editing. Performing a control action on a
document involves changing its Read/Edit rights.
The control operation has more restrictive access rights than the other two opera-
tions. Only the owner of a document, the privileged owner of the list and the listmas-
ter have control rights on a document. Another possible control action on a document
is therefore specifying who owns it.

22.2 The description file

The information (title, owner, access rights...) relative to each document must be stored,
and so each shared document is linked to a special file called a description file, whose
name includes the .desc prefix.

The description file of a directory having the path mydirectory/mysubdirectory
has the path mydirectory/mysubdirectory/.desc . The description file of a
file having the path mydirectory/mysubdirectory/myfile.myextension has the
path mydirectory/mysubdirectory/.desc.myfile.myextension .

22.3. THE PREDEFINED AUTHORIZATION SCENARIOS 209

22.2.1 Structure of description files

The structure of a document (file or directory) description file is given below. You
should never have to edit a description file.

title
<description of the file in a few words>

creation
email <e-mail of the owner of the document>
date_epoch <date_epoch of the creation of the document>

access
read <access rights for read>
edit <access rights for edit>

The following example is for a document that subscribers can read, but which only the
owner of the document and the owner of the list can edit.

title
module C++ which uses the class List

creation
email foo@some.domain.com
date_epoch 998698638

access
read private
edit owner

22.3 The predefined authorization scenarios

22.3.1 The public scenario

The public scenario is the most permissive scenario. It enables anyone (including unk-
nown users) to perform the corresponding action.

22.3.2 The private scenario

The private scenario is the basic scenario for a shared space. Every subscriber of the list
is authorized to perform the corresponding action. The private scenario is the default
read scenario for shared when this shared space is created. This can be modified by
editing the list configuration file.

210 CHAPITRE 22. SHARED DOCUMENTS

22.3.3 The scenario owner

The scenario owner is the most restrictive scenario for a shared space. Only the list-
master, list owners and the owner of the document (or those of a parent document)
are allowed to perform the corresponding action. The owner scenario is the default
scenario for editing.

22.3.4 The scenario editor

The scenario editor is for a moderated shared space for editing. Every suscriber of
the list is allowed to editing a document. But this document will have to be installed or
rejected by the editor of the list. Documents awaiting for moderation are visible by their
author and the editor(s) of the list in the shared space. The editor has also an interface
with all documents awaiting. When there is a new document, the editor is notiied and
when the document is installed, the author is notiied too. In case of reject, the editor
can notify the author or not.

22.4 Access control

Access control is an important operation performed every time a document within the
shared space is accessed.

The access control relative to a document in the hierarchy involves an iterative opera-
tion on all its parent directories.

22.4.1 Listmaster and privileged owners

The listmaster and privileged list owners are special users in the shared web. They are
allowed to perform every action on every document in the shared space. This privilege
enables control over the shared space to be maintained. It is impossible to prevent the
listmaster and privileged owners from performing whatever action they please on any
document in the shared space.

22.4.2 Special case of the shared directory

In order to allow access to a root directory to be more restrictive than that of its sub-
directories, the shared directory (root directory) is a special case as regards access
control. The access rights for read and edit are those specified in the list configuration

22.4. ACCESS CONTROL 211

file. Control of the root directory is specific. Only those users authorized to edit a list’s
configuration may change access rights on its shared directory.

22.4.3 General case

mydirectory/mysubdirectory/myfile is an arbitrary document in the shared
space, but not in the root directory. A user X wishes to perform one of the three opera-
tions (read, edit, control) on this document. The access control will proceed as follows :
– Read operation

To be authorized to perform a read action on
mydirectory/mysubdirectory/myfile, X must be authorized to read every
document making up the path ; in other words, she must be allowed to read myfile
(the authorization scenario of the description file of myfile must return do it for
user X), and the same goes for mysubdirectory and mydirectory).
In addition, given that the owner of a document or one of its pa-
rent directories is allowed to perform all actions on that document,
mydirectory/mysubdirectory/myfile may also have read operations per-
formed on it by the owners of myfile, mysubdirectory, and mydirectory.
This can be schematized as follows :

X can read <a/b/c>

if

(X can read <c>
AND X can read
AND X can read <a>)

OR

(X owner of <c>
OR X owner of
OR X owner of <a>)

– Edit operation
The access algorithm for edit is identical to the algorithm for read :

X can edit <a/b/c>

if

(X can edit <c>
AND X can edit
AND X can edit <a>)

OR

(X owner of <c>
OR X owner of
OR X owner of <a>)

212 CHAPITRE 22. SHARED DOCUMENTS

– Control operation
The access control which precedes a control action (change rights or set the owner of
a document) is much more restrictive. Only the owner of a document or the owners
of a parent document may perform a control action :

X can control <a/b/c>

if

(X owner of <c>
OR X owner of
OR X owner of <a>)

22.5 Shared document actions

The shared web feature has called for some new actions.
– action D ADMIN

Create the shared web, close it or restore it. The d admin action is accessible from a
list’s admin page.

– action D READ
Reads the document after read access control. If a folder, lists all the subdocuments
that can be read. If a file, displays it if it is viewable, else downloads it to disk. If
the document to be read contains a file named index.html or index.htm, and if
the user has no permissions other than read on all contained subdocuments, the read
action will consist in displaying the index. The d read action is accessible from a
list’s info page.

– action D CREATE DIR
Creates a new subdirectory in a directory that can be edited without moderation.
The creator is the owner of the directory. The access rights are those of the parent
directory.

– action D DESCRIBE
Describes a document that can be edited.

– action D DELETE
Deletes a document after edit access control. If applied to a folder, it has to be empty.

– action D UPLOAD
Uploads a file into a directory that can be edited.

– action D UNZIP
Unzip a file into a directory that can be edited without moderation. The whole file
hierarchy contained in the zip file is installed into the directory.

– action D OVERWRITE
Overwrites a file if it can be edited. The new owner of the file is the one who has
done the overwriting operation.

– actions D EDIT FILE and D SAVE FILE
Edits a file and saves it after edit access control. The new owner of the file is the one
who has done the saving operation.

– action D CHANGE ACCESS
Changes the access rights of a document (read or edit), provided that control of this

22.6. TEMPLATE FILES 213

document is authorized.
– action D SET OWNER

Changes the owner of a directory, provided that control of this document is authori-
zed. The directory must be empty. The new owner can be anyone, but authentication
is necessary before any action may be performed on the document.

22.6 Template files

The following template files have been created for the shared web :

22.6.1 d read.tt2

The default page for reading a document. If for a file, displays it (if viewable) or down-
loads it. If for a directory, displays all readable subdocuments, each of which will fea-
ture buttons corresponding to the different actions this subdocument allows. If the di-
rectory is editable, displays buttons to describe it or upload a file to it. If the directory is
editable without moderation, it displays button to create a new subdirector or to upload
a zip file in order to install a file hierarchy. If access to the document is editable, dis-
plays a button to edit the access to it.

22.6.2 d editfile.tt2

The page used to edit a file. If for a text file, allows it to be edited on-line. This page
also enables another file to be substituted in its place.

22.6.3 d control.tt2

The page to edit the access rights and the owner of a document.

22.6.4 d upload.tt2

This page to upload a file is only used when the name of the file already exists.

214 CHAPITRE 22. SHARED DOCUMENTS

22.6.5 d properties.tt2

This page is used to edit description file and to rename it.

Chapitre 23

Bounce management

Sympa allows bounce (non-delivery report) management. This prevents list owners
from receiving each bounce (1 per message sent to a bouncing subscriber) in their
own mailbox. Without automatic processing of bounces, list owners either go mad, or
just delete them without further attention.

Bounces are received at mylist-owner address (note that the -owner suffix can be cus-
tomized, see 7.8.4, page 62), which should be sent to the bouncequeue program via
aliases :

\samplelist-owner: "|/usr/local/sympa-stable/bin/bouncequeue \samplelist"

bouncequeue (see 2.2, page 21) stores bounces in a
/usr/local/sympa-stable/spool/bounce/ spool.

Bounces are then processed by the bounced.pl daemon. This daemon analyses
bounces to find out which e-mail addresses are concerned and what kind of error
was generated. If bouncing addresses match a subscriber’s address, information is sto-
red in the Sympa database (in subscriber table). Moreover, the most recent bounce
itself is archived in bounce path/mylist/email (where bounce path is defined in a
wwsympa.conf parameter and email is the user e-mail address).

When reviewing a list, bouncing addresses are tagged as bouncing. You may access
further information such as dates of first and last bounces, number of received bounces
for the address, the last bounce itself.

With these informations, the automatic bounce management is possible :

– The automatic task eval bouncer gives a score foreach bouncing user. The score,
between 0 to 100, allows the classification of bouncing users in two levels. (Le-

215

216 CHAPITRE 23. BOUNCE MANAGEMENT

vel 1 or 2). According to the level, automatic actions are executed periodicaly by
process bouncers task.

– The score evaluation main parameters are :
Bounces count : The number of bouncing messages received by sympa for the
user.
Type rate : Bounces are classified depending on the type of errors generated on
the user side. If the error type is ”mailbox is full” (ie a temporary 4.2.2 error type)
the type rate will be 0.5 whereas permanent errors (5.x.x) have a type rate equal to
1.
Regularity rate : This rate tells if the bounces where received regularly, compa-
red to list traffic. The list traffic is deduced from msg count file data.

The score formula is :

Score = bounce_count * type_rate * regularity_rate

To avoid making decisions (ie defining a score) without enough relevant data, the
score is not evaluated if :
– The number of the number of received bounces is lower than
minimum bouncing count (see 7.8.9, page 63)

– The bouncing period is shorter than minimum bouncing period (see 7.8.10,
page 63)

– You can define the limit between each level via the List configuration pannel, in
subsection Bounce settings. (see 20.5.2) The principle consists in associating a score
interval with a level.

– You can also define wich action must be applied on each category of user.(see 20.5.2)
Each time an action will be done, a notification email will be send to the person of
your choice. (see 20.5.2)

23.1 VERP

VERP (Variable Envelop Return Path) is used to ease automatic recognition of sub-
scribers email address when receiving a bounce. If VERP is enabled, the subscriber
address is encoded in the return path itself so Sympa bounce management processus
(bounced) will use the address the bounce was received for to retreive the subscriber
email. This is very usefull because sometimes, non delivery report don’t contain the
initial subscriber email address but an alternative address where messages are forwar-
ded. VERP is the only solution to detect automaticaly these subscriber errors but the
cost of VERP is significant, indeed VERP requires to distribute a separate message for
each subscriber and break the bulk emailer grouping optimization.

In order to benefit from VERP and keep distribution process fast, Sympa enables VERP
only for a share of the list members. If texttt verp rate (see 7.8.1,page 61) is 10% then
after 10 messages distributed in the list all subscribers have received at least one mes-
sage where VERP was enabled. Later distribution message enable VERP also for all
users where some bounce wer collected and analysed by previous VERP mechanism.

Chapitre 24

Antivirus

Sympa lets you use an external antivirus solution to check incoming mails.
In this case you must set the antivirus path and antivirus args confi-
guration parameters (see 7.13, page 71. Sympa is already compatible with
McAfee/uvscan, Fsecure/fsav, Sophos, AVP, Trend Micro/VirusWall and Clam
Antivirus. For each mail received, Sympa extracts its MIME parts in the
/usr/local/sympa-stable/spool/tmp/antivirus directory and then calls the
antivirus software to check them. When a virus is detected, Sympa looks for the virus
name in the virus scanner STDOUT and sends a your infected msg.tt2 warning to
the sender of the mail. The mail is saved as ’bad’ and the working directory is deleted
(except if Sympa is running in debug mode).

217

218 CHAPITRE 24. ANTIVIRUS

Chapitre 25

Using Sympa with LDAP

LDAP is a client-server protocol for accessing a directory service. Sympa provide va-
rious features based on access to one or more LDAP directories :

– authentication using LDAP directory instead of sympa internal storage of password
see 12.5, page 114

– named filters used in authorization scenario condition
see 13.2, page 129

– LDAP extraction of list subscribers (see 20.2.1)

– LDAP extraction of list owners or editors
see 17.7, page 152

– mail aliases stored in LDAP
see 6.3, page 46

219

220 CHAPITRE 25. USING SYMPA WITH LDAP

Chapitre 26

Sympa with S/MIME and
HTTPS

S/MIME is a cryptographic method for Mime messages based on X509 certificates.
Before installing Sympa S/Mime features (which we call S/Sympa), you should be
under no illusion about what the S stands for : “S/MIME” means “Secure MIME”.
That S certainly does not stand for “Simple”.

The aim of this chapter is simply to describe what security level is provided by Sympa
while using S/MIME messages, and how to configure Sympa for it. It is not intended
to teach anyone what S/Mime is and why it is so complex ! RFCs numbers 2311, 2312,
2632, 2633 and 2634, along with a lot of literature about S/MIME, PKCS#7 and PKI
is available on the Internet. Sympa 2.7 is the first version of Sympa to include S/MIME
features as beta-testing features.

26.1 Signed message distribution

No action required. You probably imagine that any mailing list manager (or any mail
forwarder) is compatible with S/MIME signatures, as long as it respects the MIME
structure of incoming messages. You are right. Even Majordomo can distribute a signed
message ! As Sympa provides MIME compatibility, you don’t need to do anything in
order to allow subscribers to verify signed messages distributed through a list. This is
not an issue at all, since any processe that distributes messages is compatible with end
user signing processes. Sympa simply skips the message footer attachment (ref 17.11,
page 156) to prevent any body corruption which would break the signature.

221

222 CHAPITRE 26. SYMPA WITH S/MIME AND HTTPS

26.2 Use of S/MIME signature by Sympa itself

Sympa is able to verify S/MIME signatures in order to apply S/MIME authentication
methods for message handling. Currently, this feature is limited to the distribution pro-
cess, and to any commands Sympa might find in the message body. The reasons for this
restriction are related to current S/MIME usage. S/MIME signature structure is based
on the encryption of a digest of the message. Most S/MIME agents do not include any
part of the message headers in the message digest, so anyone can modify the message
header without signature corruption ! This is easy to do : for example, anyone can edit a
signed message with their preferred message agent, modify whatever header they want
(for example Subject : , Date : and To :, and redistribute the message to a list or
to the robot without breaking the signature.

So Sympa cannot apply the S/MIME authentication method to a command parsed in
the Subject : field of a message or via the -subscribe or -unsubscribe e-mail
address.

26.3 Use of S/MIME encryption

S/Sympa is not an implementation of the “S/MIME Symmetric Key Distribution” in-
ternet draft. This sophisticated scheme is required for large lists with encryption. So,
there is still some scope for future developments :)

We assume that S/Sympa distributes message as received, i.e. unencrypted when the
list receives an unencrypted message, but otherwise encrypted.

In order to be able to send encrypted messages to a list, the sender needs to use the
X509 certificate of the list. Sympa will send an encrypted message to each subscriber
using the subscriber’s certificate. To provide this feature, Sympa needs to manage one
certificate for each list and one for each subscriber. This is available in Sympa version
2.8 and above.

26.4 S/Sympa configuration

26.4.1 Installation

The only requirement is OpenSSL (http ://www.openssl.org) version 0.9.5a and above.
OpenSSL is used by Sympa as an external plugin (like sendmail or postfix), so it must
be installed with the appropriate access (x for sympa.sympa).

26.4. S/SYMPA CONFIGURATION 223

26.4.2 configuration in sympa.conf

S/Sympa configuration is very simple. If you are used to Apache SSL, you should not
feel lost. If you are an OpenSSL guru, you will feel at home, and there may even be
changes you will wish to suggest to us.

The basic requirement is to let Sympa know where to find the binary file for the
OpenSSL program and the certificates of the trusted certificate authority. This is done
using the optional parameters openSSL and capath and / or cafile.

– openSSL : the path for the OpenSSL binary file, usually
/usr/local/ssl/bin/openSSL

– cafile : the path of a bundle of trusted ca certificates. The file
~/usr/local/sympa-stable/bin/etc/cabundle.crt included in Sympa
distribution can be used.
Both the cafile file and the capath directory should be shared with your
Apache+mod ssl configuration. This is useful for the S/Sympa web interface. Please
refer to the OpenSSL documentation for details.

– key password : the password used to protect all list private keys. xxxxxxx

26.4.3 configuration to recognize S/MIME signatures

Once OpenSSL has been installed, and sympa.conf configured, your S/Sympa is ready
to use S/Mime signatures for any authentication operation. You simply need to use
the appropriate authorization scenario for the operation you want to secure. (see 13,
page 125).

When receiving a message, Sympa applies the authorization scenario with the appro-
priate authentication method parameter. In most cases the authentication method is
“smtp”, but in cases where the message is signed and the signature has been checked
and matches the sender e-mail, Sympa applies the “smime” authentication method.

It is vital to ensure that if the authorization scenario does not recognize this authentica-
tion method, the operation requested will be rejected. Consequently, authorization sce-
narios distributed prior to version 2.7 are not compatible with the OpenSSL configura-
tion of Sympa. All standard authorization scenarios (those distributed with sympa) now
include the smime method. The following example is named send.private smime,
and restricts sends to subscribers using an S/mime signature :

title.us restricted to subscribers check smime signature
title.fr limité aux abonnés, vérif de la signature smime

is_subscriber([listname],[sender]) smime -> do_is_editor([listname],[sender]) smime -> do_it
is_owner([listname],[sender]) smime -> do_it

224 CHAPITRE 26. SYMPA WITH S/MIME AND HTTPS

It as also possible to mix various authentication methods in a single authorization sce-
nario. The following example, send.private key, requires either an md5 return key
or an S/Mime signature :

title.us restricted to subscribers with previous md5 authentication
title.fr réservé aux abonnés avec authentification MD5 préalable

is_subscriber([listname],[sender]) smtp -> request_auth
true() md5,smime -> do_it

26.4.4 distributing encrypted messages

In this section we describe S/Sympa encryption features. The goal is to use S/MIME
encryption for distribution of a message to subscribers whenever the message has been
received encrypted from the sender.

Why is S/Sympa concerned by the S/MIME encryption distribution process ? It is be-
cause encryption is performed using the recipient X509 certificate, whereas the signa-
ture requires the sender’s private key. Thus, an encrypted message can be read by the
recipient only if he or she is the owner of the private key associated with the certificate.
Consequently, the only way to encrypt a message for a list of recipients is to encrypt
and send the message for each recipient. This is what S/Sympa does when distributing
an encrypted message.

The S/Sympa encryption feature in the distribution process supposes that Sympa has
received an encrypted message for some list. To be able to encrypt a message for
a list, the sender must have some access to an X509 certificate for the list. So the
first requirement is to install a certificate and a private key for the list. The mecha-
nism whereby certificates are obtained and managed is complex. Current versions of
S/Sympa assume that list certificates and private keys are installed by the listmaster
using /usr/local/sympa-stable/bin/p12topem.pl script. This script allows you
to install a PKCS#12 bundle file containing a private key and a certificate using the ap-
propriate format.

It is a good idea to have a look at the OpenCA (http ://www.openssl.org) documen-
tation and/or PKI providers’ web documentation. You can use commercial certificates
or home-made ones. Of course, the certificate must be approved for e-mail applica-
tions, and issued by one of the trusted CA’s described in the cafile file or the capath
Sympa configuration parameter.

The list private key must be installed in a file named
/usr/local/sympa-stable/expl/mylist/private key. All the list private
keys must be encrypted using a single password defined by the password parameter
in sympa.conf.

26.5. MANAGING CERTIFICATES WITH TASKS 225

Use of navigator to obtain X509 list certificates

In many cases e-mail X509 certificates are distributed via a web server and loaded into
the browser using your mouse :) Mozilla or internet explorer allows certificates to be
exported to a file.

Here is a way to install a certificat for a list :

– Get a list certificate is to obtain an personal e-mail certificate for the canonical list
address in your browser as if it was your personal certificate,

– export the intended certificate it. The format used by Netscape is “pkcs#12”. Copy
this file to the list home directory.

– convert the pkcs#12 file into a pair of pem files : cert.pem and private key using
the /usr/local/sympa-stable/bin/p12topem.pl script. Use p12topem.pl
-help for details.

– be sure that cert.pem and private key are owned by sympa with “r” access.
– As soon as a certificate is installed for a list, the list home page includes a new link

to load the certificate to the user’s browser, and the welcome message is signed by
the list.

26.5 Managing certificates with tasks

You may automate the management of certificates with two global task models pro-
vided with Sympa. See 16.8, page 144 to know more about tasks. Report to 7.12.4,
page 71 to configure your Sympa to use these facilities.

26.5.1 chk cert expiration.daily.task model

A task created with the model chk cert expiration.daily.task
checks every day the expiration date of certificates stored in the
/usr/local/sympa-stable/expl/X509-user-certs/ directory. The user is
warned with the daily cert expiration template when his certificate has expired
or is going to expire within three days.

26.5.2 crl update.daily.task model

You may use the model crl update.daily.task to create a task which daily updates
the certificate revocation lists when needed.

226 CHAPITRE 26. SYMPA WITH S/MIME AND HTTPS

Chapitre 27

Using Sympa commands

Users interact with Sympa, of course, when they send messages to one of the lists, but
also indirectly through administrative requests (subscription, list of users, etc.).

This section describes administrative requests, as well as interaction modes in the
case of private and moderated lists. Administrative requests are messages whose body
contains commands understood by Sympa, one per line. These commands can be in-
discriminately placed in the Subject: or in the body of the message. The To: address
is generally the sympa@domain alias, although it is also advisable to recognize the
listserv@domain address.

Example :

From: pda@prism.uvsq.fr
To: sympa@cru.fr

LISTS
INFO sympa-users
REVIEW sympa-users
QUIT

Most user commands have three-letter abbreviations (e.g. REV instead of REVIEW).

27.1 User commands

– HELP
Provides instructions for the use of Sympa commands. The result is the content of
the helpfile.tt2 template file.

– INFO listname

227

228 CHAPITRE 27. USING SYMPA COMMANDS

Provides the parameters of the specified list (owner, subscription mode, etc.) and its
description. The result is the content of ~welcome[.mime].

– LISTS
Provides the names of lists managed by Sympa. This list is generated dynamically,
using the visibility (see 20.1.9, page 179). The lists.tt2 template defines the
message return by the LISTS command.

– REVIEW listname
Provides the addresses of subscribers if the run mode authorizes it. See the review
parameter (20.3.9, page 191) for the configuration file of each list, which controls
consultation authorizations for the subscriber list. Since subscriber addresses can be
abused by spammers, it is strongly recommended that you only authorize owners
to access the subscriber list.

– WHICH
Returns the list of lists to which one is subscribed, as well as the configuration
of his or her subscription to each of the lists (DIGEST, NOMAIL, SUMMARY,
CONCEAL).

– STATS listname
Provides statistics for the specified list : number of messages received, number
of messages sent, megabytes received, megabytes sent. This is the contents of the
stats file.
Access to this command is controlled by the review parameter.

– INDEX listname
Provides index of archives for specified list. Access rights to this function are the
same as for the GET command.

– GET listname archive
To retrieve archives for list (see above). Access rights are the same as for the REVIEW
command. See review parameter (20.3.9, page 191).

– LAST listname
To receive the last message distributed in a list (see above). Access rights are the
same as for the GET command.

– SUBSCRIBE listname firstname name
Requests sign-up to the specified list. The firstname and name are optional. If the list
is parameterized with a restricted subscription (see subscribe parameter, 20.3.1,
page 187), this command is sent to the list owner for approval.

– INVITE listname user@host name
Invite someone to subscribe to the specified list. The name is optional. The command
is similar to the ADD but the specified person is not added to the list but invited to
subscribe to it in accordance with the subscribe parameter, 20.3.1, page 187).

– SIGNOFF listname [user@host]
Requests unsubscription from the specified list. SIGNOFF * means unsubscription
from all lists.

– SET listname DIGEST
Puts the subscriber in digest mode for the listname list. Instead of receiving mail
from the list in a normal manner, the subscriber will periodically receive it in a
DIGEST. This DIGEST compiles a group of messages from the list, using multi-
part/digest mime format.
The sending period for these DIGESTs is regulated by the list owner using the
digest parameter (see 20.4.9, page 196). See the SET LISTNAME MAIL command
(27.1, page 229) and the reception parameter (17.4, page 151).

– SET listname SUMMARY

27.1. USER COMMANDS 229

Puts the subscriber in summary mode for the listname list. Instead of receiving mail
from the list in a normal manner, the subscriber will periodically receive the list of
messages. This mode is very close to the DIGEST reception mode but the subscriber
receives only the list of messages.
This option is available only if the digest mode is set.

– SET listname NOMAIL
Puts subscriber in nomail mode for the listname list. This mode is used when a sub-
scriber no longer wishes to receive mail from the list, but nevertheless wishes to
retain the possibility of posting to the list. This mode therefore prevents the sub-
scriber from unsubscribing and subscribing later on. See the SET LISTNAME MAIL
command (27.1, page 229) and the reception (17.4, page 151).

– SET listname TXT
Puts subscriber in txt mode for the listname list. This mode is used when a subscriber
wishes to receive mails sent in both format txt/html and txt/plain only in txt/plain
format. See the reception (17.4, page 151).

– SET listname HTML
Puts subscriber in html mode for the listname list. This mode is used when a subscri-
ber wishes to receive mails sent in both format txt/html and txt/plain only in txt/html
format. See the reception (17.4, page 151).

– SET listname URLIZE
Puts subscriber in urlize mode for the listname list. This mode is used when a sub-
scriber wishes not to receive attached files. The attached files are replaced by an
URL leading to the file stored on the list site.
See the reception (17.4, page 151).

– SET listname NOT ME
Puts subscriber in not me mode for the listname list. This mode is used when a
subscriber wishes not to receive back the message that he has sent to the list.
See the reception (17.4, page 151).

– SET listname MAIL
Puts the subscriber in normal mode (default) for the listname list. This option is
mainly used to cancel the nomail, summary or digest modes. If the subscriber was
in nomail mode, he or she will again receive mail from the list in a normal manner.
See the SET LISTNAME NOMAIL command (27.1, page 229) and the reception
parameter (17.4, page 151). Moreover, this mode allows message topic subscription
(21.1, page 205)

– SET listname CONCEAL
Puts the subscriber in conceal mode for the listname list. The subscriber will then be-
come invisible during REVIEW on this list. Only owners will see the whole subscriber
list.
See the SET LISTNAME NOCONCEAL command (27.1, page 229) and the
visibility parameter (20.1.9, page 179).

– SET listname NOCONCEAL
Puts the subscriber in noconceal mode (default) for listname list. The subscriber will
then become visible during REVIEW of this list. The conceal mode is then cancelled.
See SET LISTNAME CONCEAL command (27.1, page 229) and visibility para-
meter (20.1.9, page 179).

– QUIT
Ends acceptance of commands. This can prove useful when the message contains
additional lines, as for example in the case where a signature is automatically added
by the user’s mail program (MUA).

230 CHAPITRE 27. USING SYMPA COMMANDS

– CONFIRM key
If the send parameter of a list is set to privatekey, publickey or
privateorpublickey, messages are only distributed in the list after an authen-
tication phase by return mail, using a one-time password (numeric key). For this
authentication, the sender of the message is requested to post the “CONFIRM key”
command to Sympa.

– QUIET
This command is used for silent (mute) processing : no performance report is retur-
ned for commands prefixed with QUIET.

27.2 Owner commands

Some administrative requests are only available to list owner(s). They are indispensable
for all procedures in limited access mode, and to perform requests in place of users.
These comands are :

– ADD listname user@host firstname name
Add command similar to SUBSCRIBE. You can avoid user notification by using the
QUIET prefix (ie : QUIET ADD).

– DELETE listname user@host
Delete command similar to SIGNOFF. You can avoid user notification by using the
QUIET prefix (ie : QUIET DELETE).

– REMIND listname
REMIND is used by list owners in order to send an individual service reminder mes-
sage to each subscriber. This message is made by parsing the remind.tt2 file.

– REMIND *
REMIND is used by the listmaster to send to each subscriber of any list a single
message with a summary of his/her subscriptions. In this case the message sent is
constructed by parsing the global remind.tt2 file. For each list, Sympa tests whether
the list is configured as hidden to each subscriber (parameter lparam visibility). By
default the use of this command is restricted to listmasters. Processing may take a
lot of time !

As above, these commands can be prefixed with QUIET to indicate processing without
acknowledgment of receipt.

27.3 Moderator commands

If a list is moderated, Sympa only distributes messages enabled by one of its mode-
rators (editors). Moderators have several methods for enabling message distribution,
depending on the send list parameter (20.3.8, page 190).

– DISTRIBUTE listname key

27.3. MODERATOR COMMANDS 231

If the send parameter of a list is set to editorkey or editorkeyonly, each mes-
sage queued for moderation is stored in a spool (see 7.6.4, page 58), and linked to a
key.
The moderator must use this command to enable message distribution.

– REJECT listname key
The message with the key key is deleted from the moderation spool of the listname
list.

– MODINDEX listname
This command returns the list of messages queued for moderation for the listname
list.
The result is presented in the form of an index, which supplies, for each message, its
sending date, its sender, its size, and its associated key, as well as all messages in the
form of a digest.

232 CHAPITRE 27. USING SYMPA COMMANDS

Chapitre 28

Internals

This chapter describes these modules (or a part of) :
– src/mail.pm : low level of mail sending
– src/List.pm : list processing and informations about structure and access to list

configuration parameters
– src/sympa.pm : the main script, for messages and mail commands processing.
– src/Commands.pm : mail commands processing
– src/wwsympa.pm : web interface
– src/report.pm : notification and error reports about requested services (mail and

web)
– src/tools.pm : various tools
– src/Message.pm : Message object used to encapsule a received message.

28.1 mail.pm

This module deals with mail sending and does the SMTP job. It provides a function for
message distribution to a list, the message can be encrypted. There is also a function to
send service messages by parsing tt2 files, These messages can be signed. For sending,
a call to sendmail is done or the message is pushed in a spool according to calling
context.

28.1.1 public functions

mail file(), mail message(), mail forward(), set send spool(), reaper().

233

234 CHAPITRE 28. INTERNALS

mail file()

Message is written by parsing a tt2 file (or with a string). It writes mail headers if they
are missing and they are encoded. Then the message is sent by calling mail : :sending()
function (see 28.1.2, page 236).

IN :

1. filename : string - tt2 filename | ” - no tt2 filename sent

2. rcpt (+) : SCALAR | ref(ARRAY) - SMTP ”RCPT To :” field

3. data (+) : ref(HASH) - used to parse tt2 file, contains header values, keys are :
– return path (+) : SMTP ”MAIL From :” field if send by SMTP, q ”X-

Sympa-From :” field if send by spool
– to : ”To :” header field else it is $rcpt
– from : ”From :” field if $filename is not a full msg
– subject : ”Subject :” field if $filename is not a full msg
– replyto : ”Reply-to :” field if $filename is not a full msg
– headers : ref(HASH), keys are other mail headers
– body : body message if not $filename
– lang : tt2 language if $filename
– list : ref(HASH) if sign mode=’smime’ - keys are :

– name : list name
– dir : list directory

4. robot (+) : robot

5. sign mode : ’smime’- the mail is signed with smime | undef - no signature

OUT : 1

mail message()

Distributes a message to a list. The message is encrypted if needed, in this case, only
one SMTP session is used for each recepient otherwise, recepient are grouped by do-
main for sending (it controls the number recepient arguments to call sendmail). Mes-
sage is sent by calling mail : :sendto() function (see 28.1.2, page 236).

IN :

1. message (+) : ref(Message) - message to distribute

2. from (+) : message from

3. robot (+) : robot

4. rcpt (+) : ARRAY - recepients

OUT : $numsmtp = number of sendmail process | undef

28.1. MAIL.PM 235

mail forward()

Forward a message by calling mail : :sending() function (see 28.1.2, page 236).

IN :

1. msg (+) : ref(Message) | ref(MIME : :Entity) | string - message to forward

2. from (+) : message from

3. rcpt (+) : ref(SCALAR) | ref(ARRAY) - recepients

4. robot (+) : robot

OUT : 1 | undef

set send spool()

Used by other processes than sympa.pl to indicate to send message by writting message
in spool instead of calling mail : :smtpto() function (see 28.1.2, page 237). The concer-
ned spool is set in $send spool global variable, used by mail : :sending() function
(see 28.1.2, page 236).

IN :

1. spool (+) : the concerned spool for sending.

OUT : -

reaper()

Non blocking function used to clean the defuncts child processes by waiting for them
and then decreasing the counter. For exemple, this function is called by mail : :smtpto()
(see 28.1.2, page 237), main loop of sympa.pl, task manager.pl, bounced.pl.

IN :

1. block

OUT : the pid of the defunct process | -1 if there is no such child process.

28.1.2 private functions

sendto(), sending(), smtpto().

236 CHAPITRE 28. INTERNALS

sendto()

Encodes subject header. Encrypts the message if needed. In this case, it checks if there
is only one recepient. Then the message is sent by calling mail : :sending() function
(see 28.1.2, page 236).

IN :

1. msg header (+) : ref(MIME : :Head) - message header

2. msg body (+) : message body

3. from (+) : message from

4. rcpt (+) : ref(SCALAR) | ref(ARRAY) - message recepients (ref(SCALAR) for
encryption)

5. robot (+) : robot

6. encrypt : ’smime crypted’ the mail is encrypted with smime | undef - no en-
cryption

OUT : 1 - sending by calling smtpto (sendmail) | 0 - sending by push in spool | undef

sending()

Signs the message according to $sign mode. Chooses sending mode according to
context. If $send spool global variable is empty, the message is sent by calling
mail : :smtpto() function (see 28.1.2, page 237) else the message is written in spool
$send spool in order to be handled by sympa.pl process (because only this is allowed
to make a fork). When the message is pushed in spool, these mail headers are added :
– “X-Sympa-To :” : recepients
– “X-Sympa-From :” : from
– “X-Sympa-Checksum :” : to check allowed program to push in spool
A message pushed in spool like this will be handled later by sympa : :DoSendMessage()
function (see 28.3, page 251)

IN :

1. msg (+) : ref(MIME : :Entity) | string - message to send

2. rcpt (+) : ref(SCALAR) | ref(ARRAY) - recepients (for SMTP : ”RCPT To :”
field)

3. from (+) : for SMTP : ”MAIL From :” field | for spool sending : ”X-Sympa-
From” field

4. robot (+) : robot

5. listname : listname | ”
6. sign mode (+) : ’smime’ | ’none’for signing

7. sympa email : for the file name for spool sending

OUT : 1 - sending by calling smtpto() (sendmail) | 0 - sending by pushing in spool |
undef

28.2. LIST.PM 237

smtpto()

Calls to sendmail for the recipients given as argument by making a fork and an exec.
Before, waits for number of children process < number allowed by sympa.conf by
calling mail : :reaper() function (see 28.1.1, page ??).

IN :

1. from (+) : SMTP ”MAIL From :” field

2. rcpt (+) : ref(SCALAR)) | ref(ARRAY) - SMTP ”RCPT To :” field

3. robot (+) : robot

OUT : mail : :$fh - file handle on opened file for ouput, for SMTP ”DATA” field |
undef

28.2 List.pm

This module includes list processing functions.

Here are described functions about :
– Message distribution in a list
– Sending using templates
– Service messages
– Notification message
– Topic messages
– Scenario evaluation
Follows a description of structure and access on list parameters.

28.2.1 Functions for message distribution

distribute message(), send msg(), send msg digest().

These functions are used to message distribution in a list.

distribute msg()

Prepares and distributes a message to a list :
– updates the list stats
– Loads information from message topic file if exists and adds X-Sympa-Topic header
– hides the sender if the list is anonymoused (list config : anonymous sender) and

changes name of msg topic file if exists.

238 CHAPITRE 28. INTERNALS

– adds custom subject if necessary (list config : custom subject)
– archives the message
– changes the reply-to header if necessary (list config : reply to header)
– removes unwanted headers if present (config : remove headers))
– adds useful headers (X-Loop,X-Sequence,Errors-to,Precedence,X-no-archive - list

config : custom header)
– adds RFC 2919 header field (List-Id) and RFC 2369 header fields (list config :

rfc2369 header fields)
– stores message in digest if the list accepts digest mode (encrypted message can’t be

included in digest)
– sends the message by calling List : :send msg() (see 28.2.1, page 238).
IN :

1. self (+) : ref(List) - the list concerned by distribution
2. message (+) : ref(Message) - the message to distribute

OUT : result of List : :send msg() function (number of sendmail process)

send msg()

This function is called by List : :distribute msg() (see 28.2.1, page 237) to select sub-
scribers according to their reception mode and to the “Content-Type” header field of
the message. Sending are grouped according to their reception mode :
– normal : add a footer if the message is not protected (then the message is “altered”)

In a message topic context, selects only one who are subscribed to the topic of the
message to distribute (calls to select subcribers for topic(), see ??, page ??).

– notice
– txt : add a footer
– html : add a footer
– urlize : add a footer and create an urlize directory for Web access
The message is sent by calling List : :mail message() (see 28.1.1, page 234). If the
message is “smime crypted” and the user has not got any certificate, a message service
is sent to him.

IN :
1. self (+) : ref(List) - the list concerned by distribution
2. message (+) : ref(Message) - the message to distribute

OUT : $numsmtp : addition of mail : :mail message() function results (= number of
sendmail process) | undef

send msg digest()

Sends a digest message to the list subscribers with reception digest, digestplain or sum-
mary : it creates the list of subscribers in various digest modes and then creates the list
of messages. Finally sending to subscribers is done by calling List : :send file() func-
tion (see 28.2.2, page 239) with mail template “digest”, “digestplain” or “summary”.

28.2. LIST.PM 239

IN :

1. self (+) : ref(List) - the concerned list

OUT :
– 1 if sending
– 0 if no subscriber for sending digest, digestplain or summary
– undef

28.2.2 Functions for template sending

send file(), send global file().

These functions are used by others to send files. These files are made from template
given in parameters.

send file()

Sends a message to a user, relative to a list. It finds the $tpl.tt2 file to make the message.
If the list has a key and a certificat and if openssl is in the configuration, the message
is signed. The parsing is done with variable $data set up first with parameter $context
and then with configuration, here are set keys :
– if $who=SCALAR then

– user.password
– if $user key is not defined in $context then user.email(:= $who), user.lang

(:= list lang) and if the user is in DB then user.attributes (:= attributes in
DB user table) are defined

– if $who is subscriber of $self then subscriber.date
subscriber.update date and if exists then subscriber.bounce
subscriber.first bounce are defined

– return path : used for SMTP “MAIL From” field or ”X-Sympa-From :” field
– lang : the user lang or list lang or robot lang
– fromlist : ”From :” field, pointed on list
– from : ”From :” field, pointed on list if no defined in $context
– replyto : if openssl is is sympa.conf and the list has a key (’private key’) and a

certificat (’cert.pem’) in its directory
– boundary : boundary for multipart message if no contained in $context
– conf.email conf.host conf.sympa conf.request conf.listmaster
conf.wwsympa url conf.title : updated with robot config

– list.lang list.name list.domain list.host list.subject list.dir
list.owner(ref(ARRAY)) : updated with list config

The message is sent by calling mail : :mail file() function (see 28.1.1, page 234).

IN :

1. self (+) : ref(List)

2. tpl (+) : template file name without .tt2 extension ($tpl.tt2)

240 CHAPITRE 28. INTERNALS

3. who (+) : SCALAR | ref(ARRAY) - recepient(s)
4. robot (+) : robot
5. context : ref(HASH) - for the $data set up

OUT : 1 | undef

send global file()

Sends a message to a user not relative to a list. It finds the $tpl.tt2 file to make the
message. The parsing is done with variable $data set up first with parameter $context
and then with configuration, here are set keys :
– user.password user.lang
– if $user key is not defined in $context then user.email (:= $who)
– return path : used for SMTP “MAIL From” field or ”X-Sympa-From :” field
– lang : the user lang or robot lang
– from : ”From :” field, pointed on SYMPA if no defined in $context
– boundary : boundary for multipart message if no defined in $context
– conf.email conf.host conf.sympa conf.request conf.listmaster
conf.wwsympa url conf.title : updated with robot config

– conf.version : Sympa version
– robot domain : the robot
The message is sent by calling mail : :mail file() function (see 28.1.1, page 234).

IN :
1. tpl (+) : template file name (filename.tt2), without .tt2 extension
2. who (+) : SCALAR | ref(ARRAY) - recepient(s)
3. robot (+) : robot
4. context : ref(HASH) - for the $data set up

OUT : 1 | undef

28.2.3 Functions for service messages

archive send(), send to editor(), request auth(), send auth().

These functions are used to send services messgase, correponding to a result of a com-
mand.

archive send()

Sends an archive file ($file) to $who. The archive is a text file, independant from web
archives. It checks if the list is archived. Sending is done by callingList : :send file()
(see 28.2.2, page 239) with mail template “archive”.

28.2. LIST.PM 241

IN :

1. self (+) : ref(List) - the concerned list

2. who (+) : recepient

3. file (+) : name of the archive file to send

OUT : - | undef

send to editor()

Sends a message to the list editor for a request concerning a message to distribute. The
message awaiting for moderation is named with a key and is set in the spool queuemod.
The key is a reference on the message for editor. The message for the editor is sent by
calling List : :send file() (see 28.2.2, page 239) with mail template “moderate”. In
msg topic context, the editor is asked to tag the message.

IN :

1. self (+) : ref(List) - the concerned list

2. method : ’md5’ - for ”editorkey” | ’smtp’ - for ”editor”

3. message (+) : ref(Message) - the message to moderate

OUT : $modkey - the moderation key for naming message waiting for moderation in
spool queuemod. | undef

request auth()

Sends an authentification request for a requested command. The authentification re-
quest contains the command to be send next and it is authentified by a key. The message
is sent to user by calling List : :send file() (see 28.2.2, page 239) with mail template
“request auth”.

IN :

1. self : ref(List) not required if $cmd = “remind”.

2. email(+) : recepient, the requesting command user

3. cmd :
– if $self then ’signoff’ | ’subscribe’ | ’add’ | ’del’ | ’remind’
– else ’remind’

4. robot (+) : robot

5. param : ARRAY
– 0 : used if $cmd =’subscribe’ | ’add’ | ’del’ | ’invite’
– 1 : used if $cmd =’add’

OUT : 1 | undef

242 CHAPITRE 28. INTERNALS

send auth()

Sends an authentifiaction request for a message sent for distribution. The message for
distribution is copied in the authqueue spool to wait for confirmation by its sender . This
message is named with a key. The request is sent to user by calling List : :send file()
(see 28.2.2, page 239) with mail template “send auth”. In msg topic context, the sender
is asked to tag his message.

IN :

1. self(+) : ref(List) - the concerned list

2. message(+) : ref(Message) - the message to confirm

OUT : $modkey, the key for naming message waiting for confirmation in spool queue-
mod. | undef

28.2.4 Functions for message notification

send notify to listmaster(), send notify to owner(), send notify to editor(),
send notify to user().

These functions are used to notify listmaster, list owner, list editor or user about events.

send notify to listmaster()

Sends a notice to listmaster by parsing “listmaster notification” template. The tem-
plate makes a specified or a generic treatement according to variable $param.type (:=
$operation parameter). The message is sent by calling List : :send file() (see 28.2.2,
page 239) or List : :send global file() (see 28.2.2, page 240) according to the context :
global or list context. Available variables for the template are set up by this function,
by $param parameter and by List : :send global file() or List : :send file().

IN :

1. operation (+) : notification type, corresponds to $type in the template

2. robot (+) : robot

3. param (+) : ref(HASH) | ref (ARRAY) - values for variable used in the template :
– if ref(HASH) then variables used in the template are keys of this HASH. These

following keys are required in the function, according to $operation value :
– ’listname’(+) if $operation=(’request list creation’ | ’automa-

tic bounce management’)
– if ref(ARRAY) then variables used in template are named as : $param0, $pa-

ram1, $param2, ...

OUT : 1 | undef

28.2. LIST.PM 243

send notify to owner()

Sends a notice to list owner(s) by parsing “listowner notification” template. The tem-
plate makes a specified or a generic treatement according to variable $param.type (:=
$operation parameter). The message is sent by calling List : :send file() (see 28.2.2,
page 239). Available variables for the template are set up by this function, by $param
parameter and by List : :send file().

IN :
1. self (+) : ref(List) - the list for owner notification
2. operation (+) : notification type, corresponds to $type in the template
3. param (+) : ref(HASH) | ref (ARRAY) - values for variable used in the template :

– if ref(HASH) then variables used in the template are keys of this HASH.
– if ref(ARRAY) then variables used in template are named as : $param0, $pa-

ram1, $param2, ...

OUT : 1 | undef

send notify to editor()

Sends a notice to list editor(s) by parsing “listeditor notification” template. The tem-
plate makes a specified or a generic treatement according to variable $param.type (:=
$operation parameter). The message is sent by calling List : :send file() (see 28.2.2,
page 239). Available variables for the template are set up by this function, by $param
parameter and by List : :send file().

IN :
1. self (+) : ref(List) - the list for editor notification
2. operation (+) : notification type, corresponds to $type in the template
3. param (+) : ref(HASH) | ref (ARRAY) - values for variable used in the template :

– if ref(HASH) then variables used in the template are keys of this HASH.
– if ref(ARRAY) then variables used in template are named as : $param0, $pa-

ram1, $param2, ...

OUT : 1 | undef

send notify to user()

Sends a notice to a user by parsing “user notification” template. The template makes a
specified or a generic treatement according to variable $param.type (:= with $operation
parameter). The message is sent by calling List : :send file() (see 28.2.2, page 239).
Available variables for the template are set up by this function, by $param parameter
and by List : :send file().

244 CHAPITRE 28. INTERNALS

IN :

1. self (+) : ref(List) - the list for owner notification

2. operation (+) : notification type, corresponds to $type in the template

3. user (+) : user email to notify

4. param (+) : ref(HASH) | ref (ARRAY) - values for variable used in the template :
– if ref(HASH) then variables used in the template are keys of this HASH.
– if ref(ARRAY) then variables used in template are named as : $param0, $pa-

ram1, $param2, ...

OUT : 1 | undef

28.2.5 Functions for topic messages

is there msg topic(), is available msg topic(), get available msg topic(),
is msg topic tagging required, automatic tag(), compute topic(), tag topic(),
load msg topic file(), modifying msg topic for subscribers(), se-
lect subscribers for topic().

These functions are used to manages message topics.

N.B. : There is some exception to use some parameters : msg topic.keywords for list
parameters and topics subscriber for subscribers options in the DB table. These pa-
rameters are used as string splitted by ’,’ but to access to each one, use the function
tools : :get array from splitted string() (see 28.7, page 269) allows to access the enu-
meration.

is there msg topic()

Tests if some message topic are defined (msg topic list parameter, see ??, page ??).

IN : self (+) : ref(List)

OUT : 1 - some msg topic are defined | 0 - no msg topic

is available msg topic()

Checks for a topic if it is available in the list : look foreach msg topic.name list
parameter (see ??, page ??).

IN :

28.2. LIST.PM 245

1. self (+) : ref(List)

2. topic (+) : the name of the requested topic

OUT : topic if it is available | undef

get available msg topic()

Returns an array of available message topics (msg topic.name list parameter, see ??,
page ??).

IN : self (+) : ref(List)

OUT : ref(ARRAY)

is msg topic tagging required()

Returns if the message must be tagged or not (msg topic tagging list parameter set
to ’required’, see ??, page ??).

IN : self (+) : ref(List)

OUT : 1 - the message must be tagged | 0 - the msg can be no tagged

automatic tag()

Computes topic(s) (with compute topic() function) and tags the message (with
tag topic() function) if there are some topics defined.

IN :

1. self (+) : ref(List)

2. msg (+) : ref(MIME : :Entity)- the message to tag

3. robot (+) : robot

OUT : list of tagged topic : strings separated by ’,’. It can be empty. | undef

compute topic()

Computes topic(s) of the message. If the message is in a thread, topic is got from
the previous message else topic is got from applying a regexp on the subject and/or

246 CHAPITRE 28. INTERNALS

the body of the message (msg topic keywords apply on list parameter, see??,
page ??). Regexp is based on msg topic.keywords list parameters (See ??, page ??).

IN :

1. self (+) : ref(List)

2. msg (+) : ref(MIME : :Entity)- the message to tag

OUT : list of computed topic : strings separated by ’,’. It can be empty.

tag topic()

Tags the message by creating its topic information file in the
/usr/local/sympa-stable/spool/topic/ spool. The file contains the topic
list and the method used to tag the message. Here is the format :

TOPIC topicname,...
METHOD editor|sender|auto

IN :

1. self (+) : ref(List)

2. msg id (+) : string - the message ID of the message to tag

3. topic list (+) : the list of topics (strings splitted by ’,’)

4. method (+) : ’auto’ |’editor’|’sender’ - the method used for tagging

OUT : name of the created topic information file (directory/listname.msg id) |
undef

load msg topic file()

Search and load msg topic file corresponding to the message ID
(directory/listname.msg id). It returns information contained inside.

IN :

1. self (+) : ref(List)

2. msg id (+) : the message ID

3. robot (+) : the robot

OUT : undef | ref(HASH), keys are :
– topic : list of topics (strings separated by ’,’)
– method : ’auto’ |’editor’|’sender’ - the method used for tagging
– msg id : message ID of the tagged message
– filename : name of the file

28.2. LIST.PM 247

modifying msg topic for subscribers()

Deletes topics of subscriber that does not exist anymore and send a notify to concerned
subscribers. (Makes a diff on msg topic parameter between the list configuration before
modification and a new state by calling tools : :diff on arrays() function, see 28.7,
page 270). This function is used by wwsympa : :do edit list().

IN :

1. self (+) : ref(List) - the concerned list before modification

2. new msg topic (+) : ref(ARRAY) - new state of msg topic parameters

OUT :

1. 1 if some subscriber topics have been deleted

2. 0 else

select subscribers for topic()

Selects subscribers that are subscribed to one or more topic appearing in the topic
list incoming when their reception mode is ’mail’, and selects the other subscribers
(reception mode different from ’mail’). This function is used by List : :send msg()
function during message diffusion (see 28.2.1, page 238).

IN :

1. self (+) : ref(List)

2. string topic (+) : string splitted by ’,’ - the topic list

3. subscribers (+) : ref(ARRAY) - list of subscriber emails

OUT : ARRAY - list of selected subscribers

28.2.6 Scenario evaluation

The following function is used to evaluate scenario file “<action>.<parameter value>”,
where <action>action corresponds to a configuration parameter for an action and
<parameter value> corresponds to its value.

request action()

Return the action to perform for one sender using one authentication method to perform
an operation

IN :

248 CHAPITRE 28. INTERNALS

1. operation (+) : SCALAR - the requested action corresponding to config para-
meter

2. auth method (+) : ’smtp’|’md5’|’pgp’|’smime’
3. robot (+) : robot
4. context () : ref(HASH) - contains value to instantiate scenario variables (hash

keys)
5. debug () : boolean - if true adds keys ’condition’ and ’auth method’ to the retur-

ned hash.
OUT : undef | ref(HASH) with keys :
– action : ’do it’|’reject’|’request auth’|’owner’|’editor’|’editorkey’|’listmaster’
– reason : ’value’ if action == ’reject’ in scenario and if there is reject(reason=’value’)

to match a key in mail tt2/authorization reject.tt2. This is used in errors reports (see
??, page ??)

– tt2 : template name if action == ’reject’ in scenario and there is re-
ject(tt2=’template name’).

– condition : the checked condition.
– auth method : the checked auth method.

28.2.7 Structure and access to list configuration parameters

List parameters are representated in the list configuration file, in the list object
(list->{’admin’}) and on the Web interface. Here are translation and access func-
tions :

other (3)
(1)−→ ↑ (5)−→

CONFIG FILE LIST OBJECT WEB INTERFACE
←− (2) (4) ←− (6)

1. Loading file in memory :
List::_load_admin_file(),_load_include_admin_user_file(),_load_list_param()

2. Saving list configuration in file :
List::_save_admin_file(),_save_list_param()

3. Tools to get parameter values :
List::get_param_value(),_get_param_value_anywhere(),_get_single_param_value()

4. Tools to initialize list parameter with defaults :
List::_apply_default()

5. To present list parameters on the web interface :
wwsympa::do_edit_list_request(),_prepare_edit_form(),_prepare_data()

6. To get updates on list parameters from the web interface :
wwsympa::do_edit_list(),_check_new_value

List parameters can be simple or composed in paragraph, they can be unique or multiple
and they can singlevalued or multivalued. Here are the different kinds of parameters and
an exemple :

28.3. SYMPA.PL 249

parameters SIMPLE COMPOSED
SINGLE singlevalued (a) (b)

lang archiv.period
multivalued (c) (d)

topics available user option.reception
MULTIPLE singlevalued (e) (f)

include list owner.email
multi values not defined not defined

Here are these list parameters format in list configuration file in front of perl represen-
tation in memory :

List Configuration FILE $list->{’admin’}
(a) param value ’scalar’
(b) param

p1 val1 ’HASH→scalar’
p2 val2

(c) param val1,val2,val3 ’ARRAY(scalar & split char)’
(d) param

p1 val11, val12, val13 ’HASH→ARRAY(scalar & split char)’
p2 val21, val22, val23

(e) param val1 ’ARRAY(scalar)’
param val2

(d) param
p1 val11 ’ARRAY(HASH→scalar)’
p2 val12

param
p1 val21
p2 val22

28.3 sympa.pl

This is the main script ; it runs as a daemon and does the messages/commands pro-
cessing. It uses these funstions : DoFile(), DoMessage(), DoCommand(), DoSendMes-
sage(), DoForward(), SendDigest(), CleanSpool(), sigterm(), sighup().

Concerning reports about message distribution, function List : :send file() (see 28.2.2,
page 239) or List : :send global file() (see 28.2.2, page 240) is called with mail tem-
plate “message report”. Concernong reports about commands, it is the mail template
“command report”.

250 CHAPITRE 28. INTERNALS

DoFile()

Handles a received file : function called by the sympa.pl main loop in order to process
files contained in the queue spool. The file is encapsulated in a Message object not to
alter it. Then the file is read, the header and the body of the message are separeted. Then
the adequate function is called whether a command has been received or a message has
to be redistributed to a list.

So this function can call various functions :
– sympa : :DoMessage() for message distribution (see 28.3, page 250)
– sympa : :DoCommand() for command processing (see 28.3, page 250)
– sympa : :DoForward() for message forwarding to administrators (see 28.3, page 251)
– sympa : :DoSendMessage() for wwsympa message sending (see 28.3, page 251).
About command process a report can be sent by calling List : :send global file() (see
28.2.2, page 240) with template “command report”. For message report it is the tem-
plate “message report”.

IN : file(+) : the file to handle

OUT : $status - result of the called function | undef

DoMessage()

Handles a message sent to a list (Those that can make loop and those containing a
command are rejected). This function can call various functions :
– List : :distribute msg() for distribution (see 28.2.1, page 237)
– List : :send auth() for authentification or topic tagging by message sender(see 28.2.3,

page 242)
– List : :send to editor() for moderation or topic tagging by list moderator(see 28.2.3,

page 241).
– List : :automatic tag() for automatic topic tagging (see 28.2.5, page 245).
IN :

1. which(+) : ’list name@domain name - the concerned list
2. message(+) : ref(Message) - sent message
3. robot(+) : robot

OUT : 1 if everything went fine in order to remove the file from the queue | undef

DoCommand()

Handles a command sent to sympa. The command is parse by calling Com-
mands : :parse() (see 28.4.1, page 253).

IN :

28.3. SYMPA.PL 251

1. rcpt : recepient | <listname>-<subscribe|unsubscribe>

2. robot(+) : robot

3. msg(+) : ref(MIME : :Entity) - message containing the command

4. file(+) : file containing the message

OUT : $success - result of Command : :parse() function | undef.

DoSendMessage()

Sends a message pushed in spool by another process (ex : wwsympa.fcgi) by calling
function mail : :mail forward() (see 28.1.1, page 235).

IN :

1. msg(+) : ref(MIME : :Entity)

2. robot(+) : robot

OUT : 1 | undef

DoForward()

Handles a message sent to <listname>-editor : the list editor, <list>-request : the list
owner or the listmaster. The message is forwarded according to $function by calling
function mail : :mail forward() (see 28.1.1, page 235).

IN :

1. name(+) : list name if ($function != ’listmaster’)

2. function(+) : ’listmaster’ | ’request’ | ’editor’

3. robot(+) : robot

4. msg(+) : ref(MIME : :Entity)

OUT : 1 | undef

SendDigest()

Reads the queuedigest spool and send old digests to the subscribers with the digest
option by calling List : :send msg digest() function mail : :mail forward() (see 28.2.1,
page 238).

IN : - OUT : - | undef

252 CHAPITRE 28. INTERNALS

CleanSpool()

Cleans old files from spool $spool dir older than $clean delay.

IN :

1. spool dir(+) : the spool directory

2. clean delay(+) : the delay in days

OUT : 1

sigterm()

This function is called when a signal -TERM is received by sympa.pl. It just changes
the value of $signal loop variable in order to stop sympa.pl after endding its message
distribution if in progress. (see 4.3, page 35)

IN : - OUT : -

sighup()

This function is called when a signal -HUP is received by sympa.pl. It changes the
value of $signal loop variable and switchs of the ”–mail” (see 4.3, page 35) logging
option and continues current task.

IN : - OUT : -

28.4 Commands.pm

This module does the mail commands processing.

28.4.1 Commands processing

parse(), add(), del(), subscribe(), signoff(), invite(), last(), index(), getfile(), confirm(),
set(), distribute(), reject(), modindex(), review(), verify(), remind(), info(), stats(),
help(), lists(), which(), finished().

28.4. COMMANDS.PM 253

parse()

Parses the command line and calls the adequate subroutine (following functions) with
the arguments of the command. This function is called by sympa : :DoCommand() (see
28.3, page 250).

IN :
1. sender(+) : the command sender
2. robot(+) : robot
3. i(+) : command line
4. sign mod : ’smime’ | undef

OUT : ’unknown cmd’ | $status - command process result

add()

Adds a user to a list (requested by another user), and can send acknowledgements. New
subscriber can be notified by sending template ’welcome’.

IN :
1. what(+) : command parameters : listname, email and comments eventually
2. robot(+) : robot
3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

del()

Removes a user to a list (requested by another user), and can send acknowledgements.
Unsubscriber can be notified by sending template ’removed’.

IN :
1. what(+) : command parameters : listname and email
2. robot(+) : robot
3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1

subscribe()

Subscribes a user to a list. New subscriber can be notified by sending him template
’welcome’.

254 CHAPITRE 28. INTERNALS

IN :

1. what(+) : command parameters : listname and comments eventually

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

signoff()

Unsubscribes a user from a list. He can be notified by sending him template ’bye’.

IN :

1. which(+) : command parameters : listname and email

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’syntax error’ | ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

invite()

Invites someone to subscribe to a list by sending him the template ’invite’.

IN :

1. what(+) : command parameters : listname, email and comments

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

last()

Sends back the last archive file by calling List : :archive send() function (see 28.2.3,
page 240).

IN :

1. which(+) : listname

2. robot(+) : robot

OUT : ’unknown list’ | ’no archive’ | ’not allowed’ | 1

28.4. COMMANDS.PM 255

index()

Sends the list of archived files of a list.

IN :
1. which(+) : listname
2. robot(+) : robot

OUT : ’unknown list’ | ’no archive’ | ’not allowed’ | 1

getfile()

Sends back the requested archive file by calling List : :archive send() function (see
28.2.3, page 240).

IN :
1. which(+) : commands parameters : listname and filename(archive file)
2. robot(+) : robot

OUT : ’unknown list’ | ’no archive’ | ’not allowed’ | 1

confirm()

Confirms the authentification of a message for its distribution on a list by calling
function List : :distribute msg() for distribution (see 28.2.1, page 237) or by calling
List : :send to editor() for moderation (see ??, page ??).

IN :
1. what(+) : authentification key (command parameter)
2. robot(+) : robot

OUT : ’wrong auth’ | ’msg not found’ | 1 | undef

set()

Changes subscription options (reception or visibility)

IN :
1. what(+) : command parameters : listname and reception mode

(digest|digestplain|nomail|normal...) or visibility mode(conceal|noconceal).
2. robot(+) : robot

OUT : ’syntax error’ | ’unknown list’ | ’not allowed’ | ’failed’ | 1

256 CHAPITRE 28. INTERNALS

distribute()

Distributes the broadcast of a validated moderated message.

IN :

1. what(+) : command parameters : listname and authentification key

2. robot(+) : robot

OUT : ’unknown list’ | ’msg not found’ | 1 | undef

reject()

Refuses and deletes a moderated message. Rejected message sender can be notified by
sending him template ’reject’.

IN :

1. what(+) : command parameters : listname and authentification key

2. robot(+) : robot

OUT : ’unknown list’ | ’wrong auth’ | 1 | undef

modindex()

Sends a list of current messages to moderate of a list (look into spool queuemod) by
using template ’modindex’.

IN :

1. name(+) : listname

2. robot(+) : robot

OUT : ’unknown list’ | ’not allowed’ | ’no file’ | 1

review()

Sends the list of subscribers of a list to the requester by using template ’review’.

IN :

1. listname(+) : list name

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | wrong auth | no subscribers | ’not allowed’ | 1 | undef

28.4. COMMANDS.PM 257

verify()

Verifies an S/MIME signature.

IN :

1. listname(+) : list name

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : 1

remind()

Sends a personal reminder to each subscriber of a list or of every list (if $which = *)
using template ’remind’ or ’global remind’.

IN :

1. which(+) : * | listname

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’syntax error’ | ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

info()

Sends the list information file to the requester by using template ’info report’.

IN :

1. listname(+) : name of concerned list

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

stats()

Sends the statistics about a list using template ’stats report’.

IN :

1. listname(+) : list name

258 CHAPITRE 28. INTERNALS

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’not allowed’ | 1 | undef

help()

Sends the help file for the software by using template ’helpfile’.

IN :

1. : ?

2. robot(+) : robot

OUT : 1 | undef

lists()

Sends back the list of public lists on this node by using template ’lists’.

IN :

1. : ?

2. robot(+) : robot

OUT : 1 | undef

which()

Sends back the list of lists that sender is subscribed to. If he is owner or editor, managed
lists are noticed. Message is sent by using template ’which’.

IN :

1. : ?

2. robot(+) : robot

OUT : 1

finished()

Called when ’quit’ command is found. It sends a notification to sender : no process will
be done after this line.

28.5. WWSYMPA.FCGI 259

IN : -

OUT : 1

28.4.2 tools for command processing

get auth method()

get auth method()

Called by processing command functions to return the authentification method and to
check the key if it is ’md5’ method.

IN :

1. cmd(+) : requesting command

2. email(+) : used to compute auth if needed in command

3. error(+) : ref(HASH) - keys are :
– type : $type for “message report” template parsing
– data : ref(HASH) for “message report” template parsing
– msg : for do log()

4. sign mod(+) : ’smime’ - smime authentification | undef - smtp or md5 authenti-
fication

5. list : ref(List) | undef - in a list context or not

OUT : ’smime’ | ’md5’ | ’smtp’ - authentification method if checking not failed | undef

28.5 wwsympa.fcgi

This script provides the web interface to Sympa.

do subscribe(), do signoff(), do add(), do del(), do change email(), do reject(),
do send mail(), do sendpasswd(), do remind(), do set(), do send me(),
do request topic(), do tag topic by sender().

do subscribe()

Subscribes a user to a list. New subscriber can be notified by sending him template
’welcome’.

260 CHAPITRE 28. INTERNALS

– IN : -
– OUT : ’subrequest’ | ’login’ | ’info’ | $in.previous action | undef

do signoff()

Unsubscribes a user from a list. The unsubscriber can be notified by sending him tem-
plate ’bye’.
– IN : -
– OUT : ’sigrequest’ | ’login’ | ’info’ | undef

do add()

Adds a user to a list (requested by another user) and can send acknowledgements. New
subscriber can be notified by sending him template ’welcome’.
– IN : -
– OUT : ’loginrequest’ | ($in.previous action || ’review’) | undef

do del()

Removes a user from a list (requested by another user) and can send acknowledge-
ments. Unsubscriber can be notified by sending template ’removed’.
– IN : -
– OUT : ’loginrequest’ | ($in.previous action || ’review’) | undef

do change email()

Changes a user’s email address in Sympa environment. Password can be send to user
by sending template ’sendpasswd’.
– IN : -
– OUT : ’1’ | ’pref’ | undef

do reject()

Refuses and deletes moderated messages. Rejected message senders are notified by
sending them template ’reject’.
– IN : -
– OUT : ’loginrequest’ | ’modindex’ | undef

28.5. WWSYMPA.FCGI 261

do distribute()

Distributes moderated messages by sending a command DISTRIBUTE to sympa.pl.
For it, it calls mail : :mail file() (see 28.1.1, page 234). As it is in a Web context, the
message will be set in spool. In a context of message topic, tags the message by calling
to function List : :tag topic() (see 28.2.5, page 246).
– IN : -
– OUT : ’loginrequest’ | ’modindex’ | undef

do modindex()

Allows a moderator to moderate a list of messages and documents and/or tag message
in message topic context.
– IN : -
– OUT : ’loginrequest’ | ’admin’ | 1 | undef

do viewmod()

Allows a moderator to moderate a message and/or tag message in message topic
context.
– IN : -
– OUT : ’loginrequest’ | 1 | undef

do send mail()

Sends a message to a list by the Web interface. It uses mail : :mail file() (see 28.1.1,
page 234) to do it. As it is in a Web context, the message will be set in spool.
– IN : -
– OUT : ’loginrequest’ | ’info’ | undef

do sendpasswd()

Sends a message to a user, containing his password, by sending him template ’send-
passwd’ list by the Web interface.
– IN : -
– OUT : ’loginrequest’ | ’info’ | undef

262 CHAPITRE 28. INTERNALS

do request topic()

Allows a sender to tag his mail in message topic context.
– IN : -
– OUT : ’loginrequest’ | 1 | undef

do tag topic by sender()

Tags a message by its sender by calling List : :tag topic() and allows its diffusion by
sending a command CONFIRM to sympa.pl.
– IN : -
– OUT : ’loginrequest’ | ’info’ | undef

do remind()

Sends a command remind to sympa.pl by calling mail : :mail file() (see 28.1.1,
page 234). As it is in a Web context, the message will be set in spool.
– IN : -
– OUT : ’loginrequest’ | ’admin’ | undef

do set()

Changes subscription options (reception or visibility)
– IN : -
– OUT : ’loginrequest’ | ’info’ | undef

do send me()

Sends a web archive message to a requesting user It calls mail : :mail forward() to do
it (see 28.1.1, page 235). As it is in a Web context, the message will be set in spool.
– IN : -
– OUT : ’arc’ | 1 | undef

28.6 report.pm

This module provides various tools for notification and error reports in every Sympa
interface (mail diffusion, mail command and web command).

28.6. REPORT.PM 263

For a requested service, there are four kinds of reports to users :
– success notification

when the action does not involve any specific mail report or else, the user is notified
of the well done of the processus.

– non authorization(auth)
a user is not allowed to perform an action, Sympa provides rea-
son of rejecting. The template used to provides this information is
mail tt2/authorization reject.tt2. It contains a list of reasons, indexed by
keywords that are mentioned in reject action scenario (see 13.1, page 126)

– user error(user)
a error caused by the user, the user is informed about the error reason

– internal server error(intern)
an error independent from the user, the user is succintly informed about the er-
ror reason but a mail with more information is sent to listmaster using template
mail tt2/listmaster notification.tt2(If it is not necessary, keyword used
is ’intern quiet’.

For other reports than non authorizations templates used depends on the interface :
– message diffusion : mail tt2/message report.tt2
– mail commands : mail tt2/command report.tt2
– web commands : web tt2/notice.tt2 for positive notifications and
web tt2/error.tt2 for rejects.

28.6.1 Message diffusion

These reports use template mail tt2/message report.tt2 and there are two func-
tions : reject report msg() and notice report msg().

reject report msg()

Sends a notification to the user about an error rejecting his requested message diffusion.

IN :
1. type(+) : ’intern’|’intern quiet’|’user’|’auth’ - the error type
2. error : SCALAR - depends on $type :

– ’intern’ : string error sent to listmaster
– ’user’ : $entry in message report.tt2
– ’auth’ : $reason in authorization reject.tt2

3. user(+) : SCALAR - the user to notify
4. param : ref(HASH) - for variable instantiation message report.tt2 (key

msgid(+) is required if type == ’intern’)
5. robot : SCALAR - robot
6. msg string : SCALAR - rejected message
7. list : ref(List) - in a list context

OUT : 1 | undef

264 CHAPITRE 28. INTERNALS

notice report msg()

Sends a notification to the user about a success about his requested message diffusion.

IN :

1. entry(+) : $entry in message report.tt2

2. user(+) : SCALAR - the user to notify

3. param : ref(HASH) - for variable instantiation message report.tt2

4. robot(+) : SCALAR - robot

5. list : ref(List) - in a list context

OUT : 1 | undef

28.6.2 Mail commands

A mail can contains many commands. Errors and notices are stored in module
global arrays before sending (intern error cmd, user error cmd, global error cmd,
auth reject cmd, notice cmd). Moreover used errors here we can have global errors on
mail containing commands, so there is a function for that. These reports use template
mail tt2/command report.tt2 and there are many functions :

init report cmd()

Inits global arrays for mail command reports.

IN : -

OUT : -

is there any report cmd()

Looks for some mail command reports in one of global arrays.

IN : -

OUT : 1 if there are some reports to send

28.6. REPORT.PM 265

global report cmd()

Concerns global reports of mail commands. There are many uses cases :

1. internal server error for a differed sending at the end of the mail processing :
– global report cmd(’intern’,$error,$data,$sender,$robot)
– global report cmd(’intern quiet’,$error,$data) : the listmaster

won’t be noticied

2. internal server error for sending every reports directly (by calling
send report cmd()) :
– global report cmd(’intern’,$error,$data,$sender,$robot,1)
– global report cmd(’intern quiet’,$error,$data,$sender,$robot,1) :

the listmaster won’t be noticied

3. user error for a differed sending at the end of the mail processing :
global report cmd(’user’,$error,$data

4. user error for sending every reports directly (by calling send report cmd()) :
global report cmd(’user’,$error,$data,$sender,$robot,1)

IN :

1. type(+) : ’intern’|’intern quiet’|’user’

2. error : SCALAR - depends on $type :
– ’intern’ : string error sent to listmaster
– ’user’ : $glob.entry in command report.tt2

3. data : ref(HASH) - for variable instantiation in command report.tt2

4. sender : SCALAR - the user to notify

5. robot : SCALAR - robot

6. now : BOOLEAN - send reports now if true

OUT : 1 | undef

reject report cmd()

Concerns reject reports of mail commands. These informations are sent at the end of
the mail processing. There are many uses cases :

1. internal server error :
– reject report cmd(’intern’,$error,$data,$cmd,$sender,$robot)
– reject report cmd(’intern quiet’,$error,$data,$cmd) : the list-

master won’t be noticied

2. user error :
reject report cmd(’user’,$error,$data,$cmd)

3. non authorization :
reject report cmd(’auth’,$error,$data,$cmd)

266 CHAPITRE 28. INTERNALS

IN :
1. type(+) : ’intern’|’intern quiet’|’user’|’auth’
2. error : SCALAR - depends on $type :

– ’intern’ : string error sent to listmaster
– ’user’ : $u err.entry in command report.tt2
– ’auth’ : $reason in authorization reject.tt2

3. data : ref(HASH) - for variable instantiation in command report.tt2

4. cmd : SCALAR - the rejected command, $xx.cmd in command report.tt2

5. sender : SCALAR - the user to notify
6. robot : SCALAR - robot

OUT : 1 | undef

notice report cmd()

Concerns positive notices of mail commands. These informations are sent at the end of
the mail processing.

IN :
1. entry : $notice.entry in command report.tt2

2. data : ref(HASH) - for variable instantiation in command report.tt2

3. cmd : SCALAR - the rejected command, $xx.cmd in command report.tt2

OUT : 1 | undef

send report cmd()

Sends the template command report.tt2 to $sender with global arrays and then calls
to init report command.tt2 function. (It is used by sympa.pl at the end of mail
process if there are some reports in gloal arrays)

IN :
1. sender(+) : SCALAR - the user to notify
2. robot(+) : SCALAR - robot

OUT : 1

28.6.3 Web commands

It can have many errors and notices so they are stored in module global arrays before
html sending. (intern error web, user error web, auth reject web, notice web). These
reports use web tt2/notice.tt2 template for notices and web tt2/error.tt2 tem-
plate for rejects.

28.6. REPORT.PM 267

init report web()

Inits global arrays for web command reports.

IN : -

OUT : -

is there any reject report web()

Looks for some rejected web command reports in one of global arrays for reject.

IN : -

OUT : 1 if there are some reject reports to send (not notice)

get intern error web()

Return array of web intern error

IN : -

OUT : ref(ARRAY) - clone of intern error web

get user error web()

Return array of web user error

IN : -

OUT : ref(ARRAY) - clone of user error web

get auth reject web()

Return array of web authorisation reject

IN : -

268 CHAPITRE 28. INTERNALS

OUT : ref(ARRAY) - clone of auth reject web

get notice web()

Return array of web notice

IN : -

OUT : ref(ARRAY) - clone of notice web

reject report web()

Concerning reject reports of web commands, there are many uses cases :

1. internal server error :
– reject report web(’intern’,$error,$data,$action,$list,$user,$robot)
– reject report web(’intern quiet’,$error,$data,$action,$list) :

the listmaster won’t be noticied

2. user error :
reject report web(’user’,$error,$data,$action, $list)

3. non authorization :
reject report web(’auth’,$error,$data,$action, $list)

IN :

1. type(+) : ’intern’|’intern quiet’|’user’|’auth’

2. error(+) : SCALAR - depends on $type :
– ’intern’ : $error in listmaster notification.tt2 and possibly $i err.msg

in error.tt2
– ’intern quiet’ : possibly $i err.msg in error.tt2
– ’user’ : $u err.msg in error.tt2
– ’auth’ : $reason in authorization reject.tt2

3. data : ref(HASH) - for variable instantiation in notice.tt2

4. action(+) : SCALAR - the rejected actin, $xx.action in error.tt2, $action in
listmaster notification.tt2

5. list : ” | ref(List)

6. user : SCALAR - the user for listmaster notification

7. robot : SCALAR - robot for listmaster notification

OUT : 1 | undef

28.7. TOOLS.PL 269

notice report web()

Concerns positive notices of web commands.

IN :

1. msg : $notice.msg in notice.tt2

2. data : ref(HASH) - for variable instantiation in notice.tt2

3. action : SCALAR - the noticed command, $notice.cmd in notice.tt2

OUT : 1 | undef

28.7 tools.pl

This module provides various tools for Sympa.

checkcommand()

Checks for no command in the body of the message. If there are some command in it,
it returns true and sends a message to $sender by calling List : :send global file() (see
28.2.2, page 240) with mail template “message report”.

IN :

1. msg(+) : ref(MIME : :Entity) - the message to check

2. sender(+) : the message sender

3. robot(+) : robot

OUT :
– 1 if there are some command in the message
– 0 else

get array from splitted string()

Return an array made from a string splitted by ’,’. It removes spaces.

IN : string(+) : string to split

OUT : ref(ARRAY) -

270 CHAPITRE 28. INTERNALS

diff on arrays()

Makes set operation on arrays seen as set (with no double) :

IN :

1. A(+) : ref(ARRAY) - set

2. B(+) : ref(ARRAY) - set

OUT : ref(HASH) with keys :
– deleted : A \ B
– added : B \ A
– intersection : A ∩ B
– union : A ∪ B

clean msg id()

Cleans a msg id to use it without ’
n’, ’
s’, ¡ and ¿.

IN : msg id(+) : the message id

OUT : the clean msg id

clean email()

Lower-case it and remove leading and trailing spaces.

IN : msg id(+) : the email

OUT : the clean email

make tt2 include path()

Make an array of include path for tt2 parsing

IN :

1. robot(+) : SCALAR - the robotset

2. dir : SCALAR - directory ending each path

3. lang : SCALAR - for lang directories

28.8. MESSAGE.PM 271

4. list : ref(List) - for list directory

OUT : ref(ARRAY) - include tt2 path, respecting path priorities.

28.8 Message.pm

This module provides objects to encapsulate file message in order to prevent it from its
alteration for using signatures.

new()

Creates an object Message and initialize it :
– msg : ref(MIME : :Entity)
– altered if the message is altered
– filename : the file containing the message
– size : the message size
– sender : the first email address, in the ’From’ field
– decoded subject : the ’Subject’ field decoded by MIME : :Words : :de-

code mimewords
– subject charset : the charset used to encode the ’Subject’ field
– rcpt : the ’X-Sympa-To’ field
– list : ref(List) if it is a message no addressed to Sympa or a listmaster
– topic : the ’X-Sympa-Topic’ field.
– in a ’openssl’ context - decrypt message :

– smime crypted : ’smime crypted’ if it is in a ’openssl’ context
– orig msg : ref(MIME : :Entity) - crypted message
– msg : ref(MIME : :Entity) - decrypted message (see tools : :smime decrypt())
– msg as string : string - decrypted message (see tools : :smime decrypt())

– in a ’openssl’ context - check signature :
– protected : 1 if the message should not be altered
– smime signed : 1 if the message is signed
– smime subject : ref(HASH)if the message is signed - information on the signer

see tools : :smime parse cert().
IN :

1. pkg(+) : Message

2. file(+) : the message file

OUT : ref(Message) | undef

dump()

Dump the message object in the file descriptor $output

272 CHAPITRE 28. INTERNALS

IN :

1. self(+) : ref(Message)

2. output(+) : file descriptor

OUT : ’1’

add topic()

Adds the message topic in the Message object (topic’ and adds the ’X-Sympa-Topic’
field in the ref(MIME : :Entity) msg’.

IN :

1. self(+) : ref(Message)

2. topic(+) : string splitted by ’,’ - list of topic

OUT : ’1’

get topic()

Returns the topic(s) of the message

IN : self(+) : ref(Message)

OUT : ” if no message topic — string splitted by ’,’ if message topic

N.B. :
– (+) : required parameter, value must not be empty
– | : “or” for parameters value
– $: reference to code parameters or variables
– condition for parameter

Index

’intern quiet’ file, 263
(auth) file, 263
(intern) file, 263
(user) file, 263
- - add list familyname -

- robot robotname

- - input file
/path/to/list file.xml

option, 34
- - close family familyname - -

robot robotname option, 34
- - config config file option, 33
- - create list - - robot

robotname - - input file
/path/to/list file.xml

option, 33
- - debug option, 33
- - enable-secure option, 30
- - help option, 34
- - import listname option, 34
- - instanciate family

familyname robotname

- - input file
/path/to/family file.xml

option, 34
- - keepcopy recipient directory

option, 33
- - lang catalog option, 33
- - lowercase option, 34
- - mail option, 33
- - make alias file option, 34
- - modify list familyname

- - robot robotname

- - input file
/path/to/list file.xml

option, 34
- - prefix=PREFIX option, 29
- - sync include listaddress

option, 34
- - upgrade - - from=X - -to=Y

option, 34

- - version option, 34
- - with-bindir=DIR option, 29
- - with-cgidir=DIR option, 29
- - with-confdir=DIR option, 29
- - with-datadir=DIR option, 29
- - with-docdir=DIR option, 30
- - with-etcdir=DIR option, 30
- - with-expldir=DIR option, 29
- - with-group=LOGIN option, 30
- - with-iconsdir=DIR option, 29
- - with-initdir=DIR option, 30
- - with-libdir=DIR option, 29
- - with-libexecdir=DIR option, 29
- - with-localedir=DIR option, 30
- - with-lockdir=DIR option, 30
- - with-mandir=DIR option, 29
- - with-newaliases=FULLPATH op-

tion, 30
- - with-newaliases arg=ARGS op-

tion, 30
- - with-openssl=FULLPATH option,

30
- - with-perl=FULLPATH option, 30
- - with-piddir=DIR option, 30
- - with-postmap=FULLPATH option,

30
- - with-postmap arg=ARGS option,

30
- - with-sampledir=DIR option, 30
- - with-sbindir=DIR option, 29
- - with-scriptdir=DIR option, 30
- - with-sendmail aliases=ALIASFILE

option, 30
- - with-spooldir=DIR option, 30
- - with-user=LOGI option, 30
- - with-virtual aliases=ALIASFILE

option, 30
--mail option, 35
--with-initdir option, 34
-d option, 33
-f config file option, 33

273

274 INDEX

-h option, 34
-idle-timeout option, 83
-k recipient directory option, 33
-l catalog option, 33
-m option, 33
-v option, 34
./configure UNIX command, 40
.desc file, 208
/data structure.version file, 40, 41
/etc/aliases file, 43, 44, 46
/etc/mail/sympa aliases file, 45
/etc/mail/virtusertable file, 46
/etc/postfix/virtual.regexp file,

46
/etc/rc.d/init.d/ directory, 34
/etc/smrsh directory, 29
/etc/sudoers file, 88
/etc/sympa.conf file, 31
/etc/syslog.conf file, 31
/home/sympa-dev/etc/sympa.conf

file, 41
/usr/local/sympa-stable directory,

19, 28
/usr/local/sympa-stable/bin direc-

tory, 19, 40
/usr/local/sympa-stable/bin/alias manager.pl

file, 45
/usr/local/sympa-stable/bin/alias manager.pl

add mylistcru.fr file, 45
/usr/local/sympa-stable/bin/etc

directory, 19, 134, 164
~/usr/local/sympa-stable/bin/etc/ca-

bundle.crt file, 223
/usr/local/sympa-stable/bin/etc/create list templates

directory, 163
/usr/local/sympa-stable/bin/etc/edit list.conf

file, 165
/usr/local/sympa-stable/bin/etc/global task models

directory, 145
/usr/local/sympa-stable/bin/etc/global task models/

directory, 145
/usr/local/sympa-stable/bin/etc/list task models

directory, 145
/usr/local/sympa-stable/bin/etc/list task models/

directory, 145
/usr/local/sympa-stable/bin/etc/mail tt2/<action>.tt2

directory, 140
/usr/local/sympa-stable/bin/etc/mail tt2/<file>.tt2

directory, 153

/usr/local/sympa-stable/bin/etc/mail tt2/<lang>/<action>.tt2
directory, 140

/usr/local/sympa-stable/bin/etc/scenari
directory, 125

/usr/local/sympa-stable/bin/etc/scenari/
directory, 128

/usr/local/sympa-stable/bin/p12topem.pl
UNIX command, 225

/usr/local/sympa-stable/bin/p12topem.pl
directory, 224

/usr/local/sympa-stable/etc direc-
tory, 19, 20, 40, 52, 134, 143,
164, 181

/usr/local/sympa-stable/etc/<robot>/scenari
directory, 128

/usr/local/sympa-stable/etc/auth.conf
file, 114

/usr/local/sympa-stable/etc/create list templates
directory, 163

/usr/local/sympa-stable/etc/create list templates/
directory, 19

/usr/local/sympa-stable/etc/data sources/
directory, 20

/usr/local/sympa-stable/etc/data sources/<file>.incl
directory, 152

/usr/local/sympa-stable/etc/edit list.conf
file, 164

/usr/local/sympa-stable/etc/families/
directory, 20

/usr/local/sympa-stable/etc/global task models/
directory, 20, 145

/usr/local/sympa-stable/etc/list task models/
directory, 20, 145

/usr/local/sympa-stable/etc/mail tt2/
directory, 20

/usr/local/sympa-stable/etc/mail tt2/<action>.tt2
directory, 140

/usr/local/sympa-stable/etc/mail tt2/<file>.tt2
directory, 153

/usr/local/sympa-stable/etc/mail tt2/<lang>/<action>.tt2
directory, 140

/usr/local/sympa-stable/etc/mhonarc-ressources
directory, 93

/usr/local/sympa-stable/etc/my.domain.org
directory, 20, 133

/usr/local/sympa-stable/etc/my.domain.org/
file, 135

/usr/local/sympa-stable/etc/my.domain.org/data sources/<file>.incl
directory, 152

/usr/local/sympa-stable/etc/my.domain.org/families/

INDEX 275

directory, 20
/usr/local/sympa-stable/etc/my.domain.org/mail tt2/

directory, 134
/usr/local/sympa-stable/etc/my.domain.org/mail tt2/<action>.tt2

directory, 140
/usr/local/sympa-stable/etc/my.domain.org/mail tt2/<lang>/<action>.tt2

directory, 140
/usr/local/sympa-stable/etc/my.domain.org/robot.conf

file, 135
/usr/local/sympa-stable/etc/my.domain.org/scenari

directory, 125
/usr/local/sympa-stable/etc/my.domain.org/scenari/

directory, 19, 134
/usr/local/sympa-stable/etc/my.domain.org/web tt2/

directory, 20, 134
/usr/local/sympa-stable/etc/scenari

directory, 125, 128
/usr/local/sympa-stable/etc/scenari/

directory, 19
/usr/local/sympa-stable/etc/search filters/

directory, 129
/usr/local/sympa-stable/etc/sympa.conf

file, 15, 21, 41, 47, 133, 134,
176, 194

/usr/local/sympa-stable/etc/sympa.pid
file, 53

/usr/local/sympa-stable/etc/templates/
directory, 20

~/usr/local/sympa-stable/etc/web tt2
directory, 142

/usr/local/sympa-stable/etc/web tt2/
directory, 20

/usr/local/sympa-stable/etc/wws templates/
directory, 20

/usr/local/sympa-stable/etc/wwsympa.conf
file, 21

/usr/local/sympa-stable/etc/your.virtual.domain/robot.conf
file, 133

/usr/local/sympa-stable/expl
directory, 20, 41, 51

/usr/local/sympa-stable/expl/X509-user-certs
directory, 20

/usr/local/sympa-stable/expl/X509-user-certs/
directory, 225

/usr/local/sympa-stable/expl/<list
name>/ directory, 145

/usr/local/sympa-stable/expl/<list>/mail tt2/<action>.tt2
directory, 140

/usr/local/sympa-stable/expl/<list>/mail tt2/<lang>/<action>.tt2
directory, 140

/usr/local/sympa-stable/expl/<list>/scenari
directory, 125

/usr/local/sympa-stable/expl/<robot>/<list>/scenari
directory, 128

/usr/local/sympa-stable/expl/my.domain.org
directory, 20

/usr/local/sympa-stable/expl/my.domain.org/
directory, 135

/usr/local/sympa-stable/expl/my.domain.org/mylist
directory, 20

/usr/local/sympa-stable/expl/my.domain.org/mylist/config
file, 149

/usr/local/sympa-stable/expl/my.domain.org/mylist/config.bin
file, 149

/usr/local/sympa-stable/expl/mylist
directory, 20, 93

/usr/local/sympa-stable/expl/mylist/archives/
directory, 157, 201

/usr/local/sympa-stable/expl/mylist/config
file, 45, 149

/usr/local/sympa-stable/expl/mylist/data sources/<file>.incl
directory, 152

/usr/local/sympa-stable/expl/mylist/homepage
file, 152

/usr/local/sympa-stable/expl/mylist/info
file, 152

/usr/local/sympa-stable/expl/mylist/mail tt2/<file>.tt2
directory, 153

/usr/local/sympa-stable/expl/mylist/message.footer
file, 156

/usr/local/sympa-stable/expl/mylist/message.footer.mime
file, 195

/usr/local/sympa-stable/expl/mylist/message.header
file, 156

/usr/local/sympa-stable/expl/mylist/mhonarc-ressources
directory, 93

/usr/local/sympa-stable/expl/mylist/private key
directory, 224

/usr/local/sympa-stable/expl/mylist/scenari
directory, 20

/usr/local/sympa-stable/expl/mylist/shared
directory, 207

/usr/local/sympa-stable/expl/mylist/stats
file, 156

/usr/local/sympa-stable/expl/mylist/subscribers
file, 151

/usr/local/sympa-stable/expl/mylist/web tt2
directory, 142

/usr/local/sympa-stable/expl/mylist/web tt2/
directory, 20

276 INDEX

/usr/local/sympa-stable/expl/your.virtual.domain/
directory, 133

/usr/local/sympa-stable/locale
directory, 20, 60, 142

/usr/local/sympa-stable/spool di-
rectory, 20, 57

/usr/local/sympa-stable/spool/auth
directory, 58

/usr/local/sympa-stable/spool/auth/
directory, 22

/usr/local/sympa-stable/spool/bounce
directory, 59

/usr/local/sympa-stable/spool/bounce/
directory, 22, 215

/usr/local/sympa-stable/spool/digest/
directory, 22

/usr/local/sympa-stable/spool/distribute
directory, 58

/usr/local/sympa-stable/spool/distribute/
directory, 22

/usr/local/sympa-stable/spool/distribute/bad/
directory, 22

/usr/local/sympa-stable/spool/mod/
directory, 22

/usr/local/sympa-stable/spool/moderation
directory, 58

/usr/local/sympa-stable/spool/msg
directory, 58

/usr/local/sympa-stable/spool/msg/
directory, 22

/usr/local/sympa-stable/spool/msg/bad/
directory, 22

/usr/local/sympa-stable/spool/outgoing
directory, 58, 93

/usr/local/sympa-stable/spool/outgoing/
directory, 22, 93

/usr/local/sympa-stable/spool/task
directory, 59

/usr/local/sympa-stable/spool/task/
directory, 22

/usr/local/sympa-stable/spool/tmp
directory, 59

/usr/local/sympa-stable/spool/tmp/antivirus
directory, 217

/usr/local/sympa-stable/spool/topic
directory, 58

/usr/local/sympa-stable/spool/topic/
directory, 22, 206, 246

/usr/local/sympa-stable/src/
directory, 20

/var/lib/mysql/sympa/ directory, 41
<description> file, 162
<email> file, 162
<gecos> file, 162
<list> file, 162, 173, 174
<listname> file, 162
<owner multiple=’’1’’> file, 162
<owner multiple=’’1’’> <email>

... </email> </owner>
file, 162

<owner> file, 162
<owner include multiple=’’1’’>

<source> ... </source>
</owner include> file, 162

<type> file, 162, 163
$list->{’admin’} list parameter, 249
$numsmtp list parameter, 234, 238
$send spool list parameter, 235, 236
$sign mode list parameter, 236
service option, 33
<model name>.<model

version>.task file, 145

, 138
List-admin menu-> Archive

Management configuration
keyword, 94

A list parameter, 270
access list parameter, 201, 202
action list parameter, 199, 200, 268, 269
active arc file, 95
active lists file, 95, 96
ADD mail command, 15, 153, 177, 188,

198, 228, 230
add list parameter, 188
admin table, 73
administrator, 15, 44
alias manager.pl file, 30, 45
aliases, 43, 44, 149
aliaswrapper file, 30, 45
altered list parameter, 271
anonymous headers fields configura-

tion keyword, 56
anonymous sender, 194
anonymous sender list parameter, 194
antivirus args configuration keyword,

72, 217
antivirus notify configuration key-

word, 72

INDEX 277

antivirus path configuration keyword,
72, 217

Apache, 34
apply list parameter, 193
arc path configuration keyword, 41
archive, 201
archive list parameter, 157, 201
Archive : :Zip perl module, 28
archive crypted msg list parameter,

203
archived.pl file, 21, 22, 88, 90, 93
attrs list parameter, 183
attrs1 list parameter, 184
attrs2 list parameter, 185
auth list parameter, 198
auth.conf file, 21, 113, 114
auth method list parameter, 248
authentication, 60, 150, 198, 230
authorization reject.tt2 file, 263,

266, 268
available-user-options, 196
available user options list parame-

ter, 196
avg configuration keyword, 55

B list parameter, 270
bg color configuration keyword, 50, 134
block list parameter, 235
block spams, 22
body list parameter, 234
bounce, 59
bounce list parameter, 65
bounce/ directory, 21
bounce delay configuration keyword,

64
bounce email prefix configuration

keyword, 64
bounce halt rate configuration key-

word, 65, 199
bounce path/mylist/email directory,

215
bounce score suscriber configura-

tion keyword, 63
bounce warn rate configuration key-

word, 65, 199
bounced.pl file, 21, 88, 90, 215
bouncequeue file, 21, 29, 30, 45, 59, 215
bouncers level1 action configura-

tion keyword, 199, 200

bouncers level1 rate configuration
keyword, 199

bouncers level2 rate configuration
keyword, 200

bouncerslevel1 list parameter, 64
bouncerslevel2 list parameter, 64
Bounces count configuration keyword,

216
boundary list parameter, 239, 240

cache list config configuration key-
word, 65, 149

cafile configuration keyword, 71, 223,
224

capath configuration keyword, 70, 71,
223, 224

CAS-based authentication, 21
cert list parameter, 181
cert.pem configuration keyword, 225
CGI perl module, 27
Changelog file, 37
changes, 37
check perl modules.pl UNIX com-

mand, 27
chk cert expiration.daily.task

file, 225
chk cert expiration task configura-

tion keyword, 71
CipherSaber perl module, 28
clean delay list parameter, 252
clean delay queue configuration key-

word, 59
clean delay queueauth configuration

keyword, 60
clean delay queuemod configuration

keyword, 60
clean delay queuesubscribe confi-

guration keyword, 60
clean delay queuetopic configura-

tion keyword, 60
cmd list parameter, 241, 259, 266
color 0 configuration keyword, 49, 134
color 1 configuration keyword, 49
color 15 configuration keyword, 49
command report.tt2 file, 265, 266
Commands.pm, 252
commands : :add(), 253
commands : :confirm(), 255
commands : :del(), 253
commands : :distribute(), 256

278 INDEX

commands : :finished(), 258
commands : :get auth method(), 259
commands : :help(), 258
commands : :index(), 255
commands : :info(), 257
commands : :invite(), 254
commands : :last(), 254, 255
commands : :lists(), 258
commands : :modindex(), 256
commands : :parse(), 253
commands : :reject(), 256
commands : :remind(), 257
commands : :review(), 256
commands : :set(), 255
commands : :signoff(), 254
commands : :stats(), 257
commands : :subscribe(), 253
commands : :verify(), 257
conf.email conf.host

conf.sympa conf.request
conf.listmaster
conf.wwsympa url
conf.title list parame-
ter, 239, 240

conf.version list parameter, 240
config file, 15, 65, 74, 159, 165, 175–

178, 201, 202
config.bin file, 65
config.tt2 file, 168
config_bin file, 34
config changes file, 172, 174
configuration file, 47
configure UNIX command, 29, 34
CONFIRM mail command, 230
connect options list parameter, 182
context list parameter, 240, 248
cookie, 198
cookie configuration keyword, 51, 94,

122, 198
cookie list parameter, 198
cookie domain configuration keyword,

134
count file, 96, 97
CPAN, 26, 27
cpan update, 38
create db file, 74
create list configuration keyword, 51,

134, 164
create list.conf configuration key-

word, 164

crl update.daily.task file, 225
crl update task configuration key-

word, 71
Crypt : :CipherSaber file, 87
css path configuration keyword, 50, 134
css url configuration keyword, 50, 134
custom-header, 194
custom-subject, 195
custom header list parameter, 194
custom subject list parameter, 195

d edit list parameter, 192, 193
d read list parameter, 192
daily cert expiration file, 225
dark color configuration keyword, 50,

134
data list parameter, 234, 259, 265, 266,

268, 269
data-inclusion-file, 152, 176, 178
data structure.version file, 22
DB package, 26
db update, 39
db additional subscriber fields

configuration keyword, 68
db additional user fields configu-

ration keyword, 69
db env configuration keyword, 68
db env list parameter, 182
DB File perl module, 27
db host configuration keyword, 67, 84
db name configuration keyword, 41, 67,

84
db name list parameter, 182
db options configuration keyword, 68
db passwd configuration keyword, 68,

83, 84
db port configuration keyword, 68
db port list parameter, 182
db timeout configuration keyword, 68
db type configuration keyword, 67, 84
db type list parameter, 181
db user configuration keyword, 68, 83,

84
DBD perl module, 15, 28
DBI perl module, 15, 28, 73, 74
debug list parameter, 248
decoded subject list parameter, 271
default-user-options, 197
default archive quota configuration

keyword, 57, 203

INDEX 279

default bounce level1 rate configu-
ration keyword, 64

default bounce level2 rate configu-
ration keyword, 64

default home configuration keyword,
134

default list priority configuration
keyword, 66, 198

default remind task configuration
keyword, 65

default shared quota configuration
keyword, 57

default user options list parameter,
197

DEL mail command, 153, 189
del list parameter, 189
DELETE mail command, 15, 155, 177,

198, 230
digest, 58, 150, 196
digest list parameter, 151, 170, 196, 228
Digest-MD5 perl module, 27
digest max size configuration key-

word, 196
dir list parameter, 234, 270
directory/listname.msg id file, 246
DISTRIBUTE mail command, 230
distribution, 58
distribution mode configuration key-

word, 53
do it configuration keyword, 164
doc/ directory, 29
domain configuration keyword, 47, 176
double installation, 40

edit-list.conf file, 23
edit list.conf file, 21, 52, 168, 174
editor, 128
editor list parameter, 175, 176
editor include list parameter, 20, 176
editor include.source parameter

list parameter, 170
editor inlude list parameter, 152
editorkey, 128
editorkey list parameter, 176
editorkeyonly list parameter, 176
email configuration keyword, 48, 134
email list parameter, 151, 177, 241, 259
encrypt list parameter, 236
entry list parameter, 264, 266

error list parameter, 259, 263, 265, 266,
268

error.tt2 file, 268
error color configuration keyword, 50,

134
error config file, 173
etc configuration keyword, 52
eval bouncer configuration keyword,

215
eval bouncers task configuration key-

word, 63
Exim, 55
exim UNIX command, 43
expire bounce task configuration key-

word, 62
expire bounce task list parameter, 199

f dir list parameter, 182
families, 167
families file, 168
family closed file, 172–174
family name, 204
FastCGI, 28, 90
FCGI perl module, 28, 90
file list parameter, 241, 250, 251, 271
File-Spec perl module, 27
filename list parameter, 234, 246, 271
filter list parameter, 183
filter1 list parameter, 184
filter2 list parameter, 185
footer-type, 195
footer type list parameter, 156, 157,

195
footer type (optional, default

value is mime) list parame-
ter, 195

for file, 96, 97
from list parameter, 234–237, 239, 240
From : header, 47, 48, 111
from : configuration keyword, 125
fromlist list parameter, 239
function list parameter, 251

gcc UNIX command, 26
gecos list parameter, 151, 177
GET mail command, 201, 202, 228
global remind configuration keyword,

51
global report cmd(’intern’,$error,$data,$sender,$robot)

file, 265

280 INDEX

global report cmd(’intern’,$error,$data,$sender,$robot,1)
file, 265

global report cmd(’intern quiet’,$error,$data)
file, 265

global report cmd(’intern quiet’,$error,$data,$sender,$robot,1)
file, 265

global report cmd(’user’,$error,$data
file, 265

global report cmd(’user’,$error,$data,$sender,$robot,1)
file, 265

global task models directory, 52

halt rate list parameter, 199
headers list parameter, 234
HELP mail command, 140, 227
helpfile.tt2 file, 227
home configuration keyword, 41, 51
host, 176
host configuration keyword, 47, 135
host list parameter, 176, 182–184
http host configuration keyword, 133,

135
httpd.conf file, 99

i list parameter, 253
ignore configuration keyword, 54
include, 180
include-list, 180
include-remote-sympa-list, 181
include file list parameter, 152, 180,

186
include ldap 2level query list para-

meter, 184
include ldap query list parameter,

152, 180, 183
include list list parameter, 152, 180
include remote file list parameter,

186
include remote sympa list list para-

meter, 152, 180, 181
include sql query list parameter, 152,

180, 181
INDEX mail command, 201, 202, 228
index.htm file, 212
index.html file, 212
INFO mail command, 152, 227
info file, 162
info list parameter, 177
init report command.tt2 file, 266
internationalization, 142

INVITE mail command, 155, 228
IO-stringy perl module, 27

key passwd configuration keyword, 71
key password configuration keyword,

223
kill -HUP file, 35
kill -HUP option, 35
kill -TERM file, 35
kill -TERM option, 35

lang configuration keyword, 61, 134,
142, 176

lang list parameter, 142, 234, 239, 240,
270

LAST mail command, 201, 202, 228
latest arc file, 96
latest d read file, 95, 97
latest instantiation, 204
latest lists file, 95
LDAP, 13, 15–17, 28, 92, 112, 129, 152,

179, 180, 183, 184, 219
LDAP authentication, 15, 16, 112
LDAP filter, 129
LDAP-based authentication, 21
LDAP-based mailing lists, 15
ldap alias manager.pl file, 46
libintl-perl perl module, 27
light color configuration keyword, 50,

134
list list parameter, 234, 259, 263, 264,

268, 271
list->{’admin’} list parameter, 248
list.lang list.name list.domain

list.host list.subject
list.dir list.owner list
parameter, 239

List.pm, 237
List : :archive send(), 240
List : :automatic tag(), 245
List : :compute topic(), 245
List : :distribute msg(), 237
List : :get available msg topic(), 245
List : :is available msg topic(), 244
List : :is msg topic tagging required(),

245
List : :is there msg topic(), 244
List : :load msg topic file(), 246
List : :modi-

fying msg topic for subscribers(),

INDEX 281

247
List : :request auth(), 241
List : :select subscribers for topic(), 247
List : :send auth(), 242
List : :send file(), 239
List : :send global file(), 240
List : :send msg(), 238
List : :send msg digest(), 238
List : :send notify to editor(), 243
List : :send notify to listmaster(), 242
List : :send notify to owner(), 243
List : :send notify to user(), 243
List : :send to editor(), 241
List : :tag topic(), 246
list aliases file, 46
list check smtp configuration key-

word, 56, 57
list check suffixes configuration

keyword, 56
list created.tt2 file, 164
list rejected.tt2 file, 164
list task models directory, 52
listmaster configuration keyword, 48,

94, 134, 164
listmaster email configuration key-

word, 48
listmaster notification.tt2 file,

268
listname list parameter, 236, 256, 257
listname, subject,owner.email

and/or
owner include.source
list parameter, 162

LISTS mail command, 140, 178, 179, 228
load subscribers.pl file, 83
locale configuration keyword, 61
locale/ directory, 29
localedir configuration keyword, 60
localization, 142
log facility list parameter, 31
log level configuration keyword, 52
log smtp configuration keyword, 54, 134
log socket type configuration key-

word, 52, 53
log socket type list parameter, 31
logo html definition configuration

keyword, 50, 134
loop-detection, 144
loop-prevention-regex, 195

loop command decrease factor
configuration keyword, 70, 144

loop command max configuration key-
word, 69, 144

loop command sampling delay confi-
guration keyword, 70, 144

loop prevention regex configuration
keyword, 70, 195

loop prevention regex list parameter,
195

mail aliases, 44, 149
mail.pm, 233
mail : :$fh list parameter, 237
mail : :mail file(), 234
mail : :mail forward(), 235
mail : :mail message(), 234
mail : :reaper(), 235
mail : :sending(), 236
mail : :sendto(), 236
mail : :set send spool(), 235
mail : :smtpto(), 237
mail tt2 directory, 52
mail tt2/authorization reject.tt2

file, 263
mail tt2/command report.tt2 file,

263, 264
mail tt2/listmaster notification.tt2

file, 263
mail tt2/message report.tt2 file,

263
MailTools perl module, 27
make UNIX command, 27, 30, 38
make install UNIX command, 19, 30,

34, 37
Makefile file, 29
max-size, 194
max size configuration keyword, 54,

134, 194
max size list parameter, 54, 194
maxsmtp configuration keyword, 53
md5 configuration keyword, 111, 125
message list parameter, 234, 238, 241,

242, 250
message topic, 205
message.footer.mime file, 156
message.header.mime file, 156
Message.pm, 271
message : :add topic(), 272
message : :dump(), 271

282 INDEX

message : :get topic(), 272
message : :new(), 271
message report.tt2 file, 263, 264
method list parameter, 241, 246
MhOnArc file, 21
mhonarc file, 93
mhonarc-ressources file, 93
mhonarc-ressources.tt2 file, 61
MIME, 14
MIME-Base64 perl module, 27
MIME-tools perl module, 27
minimum bouncing count configura-

tion keyword, 63, 216
minimum bouncing period configura-

tion keyword, 63, 216
misaddressed commands configuration

keyword, 54
misaddressed commands regexp

configuration keyword, 54
mod fastcgi, 90
~model type.model.task file, 146
moderation, 58, 60, 150, 175, 231
moderator, 175, 231
MODINDEX mail command, 60, 231
msg list parameter, 235, 236, 245, 246,

251, 259, 269, 271
msg’ list parameter, 272
msg-topic, 197
msg-topic-keywords-apply-on, 197
msg-topic-tagging, 198
msg/ directory, 21
msg as string list parameter, 271
msg body list parameter, 236
msg count file, 216
msg header list parameter, 236
msg id list parameter, 246, 270
msg string list parameter, 263
msg topic list parameter, 143, 179, 197,

205, 244
msg topic.keywords list parameter,

170, 197, 206, 246
msg topic.name list parameter, 197,

244, 245
msg topic.title list parameter, 197
msg topic keywords apply on list pa-

rameter, 197, 205, 246
msg topic tagging list parameter, 198,

205, 245
msgid list parameter, 263
Msql-Mysql-modules perl module, 74

multiple file, 162
my family file, 171
my file.xml file, 163, 171
my robot file, 163, 171
mydirectory directory, 211
mydirectory/mysubdirectory direc-

tory, 208
mydirectory/mysubdirectory/.desc

directory, 208
mydirectory/mysubdirectory/.desc.myfile.myextension

directory, 208
mydirectory/mysubdirectory/myfile

directory, 211
mydirectory/mysubdirectory/myfile.myextension

directory, 208
myfile directory, 211
MySQL, 15, 26, 34, 83
mysql, 39, 67
mysqld file, 41
mysubdirectory directory, 211

name list parameter, 182, 234, 251, 256
negative regexp configuration key-

word, 114, 116
Net : :LDAP perl module, 28, 183, 184
Net : :LDAPS, 119–121
new server, 41
new msg topic list parameter, 247
newaliases UNIX command, 44, 45
NEWS file, 37, 39
notice.tt2 file, 268, 269
notice report msg() file, 263
Notification list parameter, 199, 200
now list parameter, 265
nrcpt configuration keyword, 55
nrcpt by domain file, 22

open configuration keyword, 159
open file, 163
openSSL UNIX command, 223
openSSL configuration keyword, 223
openssl configuration keyword, 70
operation list parameter, 242–244, 248
Oracle, 15, 26
orig msg list parameter, 271
other email list parameter, 193
outgoing/ directory, 21
output list parameter, 272
owner, 45
owner file, 162

INDEX 283

owner list parameter, 175–177, 198
owner include list parameter, 20, 152,

175, 176, 178
owner include.source parameter

list parameter, 170
owner priority configuration keyword,

66

p12topem.pl -help UNIX command,
225

param file, 152, 178
param list parameter, 241–244, 263, 264
param constraint.conf, 170
param constraint.conf file, 168, 170
passwd list parameter, 182–184, 186
password configuration keyword, 224
path list parameter, 181
pending configuration keyword, 159, 164
period list parameter, 201
pidfile configuration keyword, 53
pkg list parameter, 271
port list parameter, 181, 183, 184
postfix, 55
postfix UNIX command, 14, 26, 43, 46
postfix manager.pl file, 30
PostgreSQL, 15, 26
preserve customizations, 40
priority list parameter, 198
private list parameter, 14
private key configuration keyword, 225
privateoreditorkey list parameter, 14,

176
process bouncers configuration key-

word, 216
process bouncers task configuration

keyword, 63
profile list parameter, 177, 178
protected list parameter, 271
purge orphan bounces task configu-

ration keyword, 63
purge user table task configuration

keyword, 69

Qmail, 55
qmail UNIX command, 14, 26, 43
queue configuration keyword, 57, 59
queue file, 21, 29–31, 43, 57
queueauth configuration keyword, 58
queuebounce configuration keyword, 59
queuebounce directory, 45

queuedigest configuration keyword, 58
queuedistribute configuration key-

word, 58
queuemod configuration keyword, 58, 60
queueoutgoing configuration keyword,

58
queuetask configuration keyword, 59
queuetopic configuration keyword, 58
QUIET mail command, 230
QUIET ADD mail command, 230
QUIET DELETE mail command, 230
QUIT mail command, 229
quota list parameter, 193, 202

rate list parameter, 64, 199, 200
rcpt list parameter, 234–237, 251, 271
RDBMS, 15, 26
reception configuration keyword, 196
reception list parameter, 151, 196, 197,

228, 229
reception mode, 205
reception nomail list parameter, 177,

178
regex1 list parameter, 185
regex2 list parameter, 185
regexp configuration keyword, 114, 116
Regularity rate configuration key-

word, 216
REJECT mail command, 153, 155, 231
reject configuration keyword, 164
reject report cmd(’auth’,$error,$data,$cmd)

file, 265
reject report cmd(’intern’,$error,$data,$cmd,$sender,$robot)

file, 265
reject report cmd(’intern quiet’,$error,$data,$cmd)

file, 265
reject report cmd(’user’,$error,$data,$cmd)

file, 265
reject report msg() file, 263
reject report web(’auth’,$error,$data,$action,

$list) file, 268
reject report web(’intern’,$error,$data,$action,$list,$user,$robot)

file, 268
reject report web(’intern quiet’,$error,$data,$action,$list)

file, 268
reject report web(’user’,$error,$data,$action,

$list) file, 268
RELEASE NOTES file, 17, 25
REMIND mail command, 155, 230
remind list parameter, 189

284 INDEX

remind mail command, 189
REMIND * mail command, 140, 141
remind.annual.task file, 145
remind.semestrial.task file, 145
remind.tt2 file, 156
remind return path configuration key-

word, 62, 201
remind return path list parameter, 201
remind task list parameter, 65
remote host list parameter, 181
remove headers configuration keyword,

56
Reply-To : header, 193
reply to header list parameter, 193
replyto list parameter, 234, 239
report.pm, 262
report : :get auth reject web(), 267
report : :get intern error web(), 267
report : :get notice web(), 268
report : :get user error web(), 267
report : :init report cmd(), 264
report : :init report web(), 267
report : :is there any reject report web(),

267
report : :is there any report cmd(), 264
report : :notice report cmd(), 266
report : :notice report web(), 269
report : :reject report cmd(), 265
report : :reject report msg(), 263, 264
report : :reject report web(), 268
report : :send report cmd(), 265, 266
request priority configuration key-

word, 66
return path list parameter, 234, 239,

240
return path suffix configuration key-

word, 62
REVIEW mail command, 15, 151, 191,

197, 227–229
review list parameter, 191, 228
rfc2369-header-fields, 194
rfc2369 header fields configuration

keyword, 56, 194
rfc2369 header fields list parameter,

194
robot list parameter, 234–237, 240–242,

245, 246, 248, 250, 251, 253–
258, 263–266, 268–270

robot aliases, 43

robot.conf file, 21, 23, 94, 100, 133,
176

robot domain list parameter, 240
rss, 95

sample directory, 143, 149
sample/ directory, 21, 29
scenari directory, 52
scenari/subscribe.rennes1 file, 128
scenario, 125
scope list parameter, 183
scope1 list parameter, 185
scope2 list parameter, 185
script directory, 94
script/ directory, 74
select list parameter, 183
select1 list parameter, 185
select2 list parameter, 185
selected color configuration keyword,

50, 134
self list parameter, 238, 239, 241–247,

272
send list parameter, 14, 176, 190, 191,

230, 231
send private configuration keyword,

125
send report cmd() file, 265
sender list parameter, 253, 265, 266, 269,

271
sendmail UNIX command, 14, 26, 43,

46, 55
sendmail configuration keyword, 55
sendmail.mc file, 45, 55
SENDMAIL ALIASES, 45
sendmail aliases configuration key-

word, 55
sendmail args configuration keyword,

55
SET mail command, 228, 229
set-uid-on-exec bit, 31
SET LISTNAME CONCEAL mail com-

mand, 229
SET LISTNAME MAIL mail command,

151, 228, 229
SET LISTNAME NOCONCEAL mail com-

mand, 229
SET LISTNAME NOMAIL mail command,

151, 229
SET LISTNAME SUMMARY mail com-

mand, 151

INDEX 285

shaded color configuration keyword,
50, 134

shared, 192, 207
shared directory, 192, 209–211
SIG mail command, 153
sign mod list parameter, 253, 254, 256–

259
sign mode list parameter, 234, 236
SIGNOFF mail command, 228, 230
SIGNOFF * mail command, 228
size list parameter, 271
sleep configuration keyword, 59
smime configuration keyword, 111, 125
smime crypted list parameter, 271
smime signed list parameter, 271
smime subject list parameter, 271
smtp configuration keyword, 111, 125
soap url configuration keyword, 49,

100, 134
source myfile list parameter, 178
source parameter list parameter, 152,

178
source parameters a,b,c list para-

meter, 178
spam protection, 49, 203
spam protection configuration key-

word, 49, 203
spool, 58–60, 231
spool configuration keyword, 57
spool list parameter, 235
spool dir list parameter, 252
SQL, 13, 15, 152, 179, 180
sql query list parameter, 182
SQLite, 15, 26
src/ directory, 29
src/Commands.pm file, 233
src/List.pm file, 233
~src/locale/Makefile file, 61
src/mail.pm file, 233
src/Message.pm file, 233
src/report.pm file, 233
src/sympa.pm file, 233
src/tools.pm file, 233
src/wwsympa.pm file, 233
statistics, 156
STATS mail command, 228
stats file, 228
stop-signals, 35
string list parameter, 269
string topic list parameter, 247

SUB mail command, 153
subject list parameter, 175, 178, 234
Subject : header, 227
subject charset list parameter, 271
SUBSCRIBE mail command, 177, 228, 230
subscribe list parameter, 177, 187, 228
subscriber file, 151
subscriber.bounce

subscriber.first bounce
list parameter, 239

subscriber.date
subscriber.update date
list parameter, 239

subscriber table, 69, 73
subscribers configuration keyword,

179
subscribers file, 74, 83, 85
subscribers list parameter, 247
subscribers.closed.dump file, 166
subscribers.db.dump file, 34, 85
subscription requests, 60
suffix list parameter, 183
suffix1 list parameter, 184
suffix2 list parameter, 185
supported lang configuration keyword,

61, 134
suscriber table configuration key-

word, 63
Sybase, 15, 26
sympa-5.2.2/ directory, 29
sympa.conf, 47
sympa.conf configuration keyword, 224
sympa.conf file, 21–23, 29–31, 39, 45,

51, 83, 84, 87, 94, 100, 133,
135, 142, 145, 163, 179, 200,
201, 203

sympa.pl, 249
sympa.pl file, 21, 22, 33, 39–41, 43, 53,

57, 88, 94, 132, 159, 163, 166
~sympa/bin/ directory, 31
~sympa/locale directory, 33
~sympa/src/ directory, 29
sympa : :cleanspool(), 252
sympa : :DoCommand(), 250
sympa : :DoFile(), 250
sympa : :DoForward(), 251
sympa : :DoMessage(), 250
sympa : :DoSendMessage(), 251
sympa : :SendDigest(), 251
sympa : :sighup(), 252

286 INDEX

sympa : :sigterm(), 252
sympa email list parameter, 236
sympa priority configuration keyword,

66
sympa soap server.fcgi file, 21
sympa wizard.pl file, 21
syslog configuration keyword, 52
syslog list parameter, 31
syslogd UNIX command, 31, 53

task/ directory, 21, 147
task manager.pl file, 21, 62, 63, 69
tasks, 144
Template-Toolkit perl module, 27
templates format, 139
templates, list, 153
templates, site, 140
templates, web, 142
testlogs.pl file, 31
text color configuration keyword, 50,

134
timeout list parameter, 183
timeout1 list parameter, 184
timeout2 list parameter, 185
title configuration keyword, 134
tmpdir configuration keyword, 59
to list parameter, 234
To : header, 227
tools.pl, 269
tools : :checkcommand(), 269
tools : :clean email(), 270
tools : :clean msg id(), 270
tools : :diff on arrays(), 270
tools : :get array from splitted string(),

269
tools : :make tt2 include path(), 270
topic, 60
topic list parameter, 245, 246, 271, 272
topic’ list parameter, 272
topic list list parameter, 246
topics, 143
topics list parameter, 143, 179
topics.conf file, 21, 143
tpl list parameter, 239, 240
ttl, 180
ttl list parameter, 180
TULP, 16
type list parameter, 259, 263, 265, 266,

268
Type rate configuration keyword, 216

umask UNIX command, 53
umask configuration keyword, 53
unique configuration keyword, 200
unsubscribe list parameter, 188
update db field types configuration

keyword, 67
url list parameter, 186
urlize min size configuration key-

word, 57
user list parameter, 182–184, 186, 244,

263, 264, 268
user-data-source, 179
user.attributes list parameter, 239
user.email list parameter, 239, 240
user.lang list parameter, 239
user.password list parameter, 239
user.password user.lang list para-

meter, 240
user data source list parameter, 84,

138, 151, 152, 179–181, 183,
184, 186

user table, 69, 73

value list parameter, 193
verp rate configuration keyword, 44,

61, 62, 216
visibility list parameter, 141, 151,

179, 197, 228, 229

warn rate list parameter, 199
web archive, 202
web archive list parameter, 202
web archive spam protection confi-

guration keyword, 49, 203
web recode to configuration keyword,

61
web tt2 directory, 52
web tt2/error.tt2 file, 263, 266
web tt2/notice.tt2 file, 263, 266
welcome.tt2 file, 20
~welcome[.mime] file, 228
welcome return path configuration

keyword, 62, 200, 201
welcome return path list parameter,

200
what list parameter, 253–256
WHICH mail command, 228
which list parameter, 250, 254, 255, 257
who list parameter, 240, 241

INDEX 287

WWSympa, 15, 20, 21, 28, 45, 49, 83, 87–
91, 93–95, 111, 122, 137, 139,
140, 142, 143, 152, 153, 179,
180, 207

wwsympa directory, 29
wwsympa.conf file, 21, 29, 31, 41, 135,

201, 215
WWSympa.fcgi file, 87
wwsympa.fcgi, 259
wwsympa.fcgi file, 21, 34, 88, 89, 122
wwsympa : :do add(), 260
wwsympa : :do change email(), 260
wwsympa : :do del(), 260
wwsympa : :do distribute(), 261
wwsympa : :do modindex(), 261
wwsympa : :do reject(), 260
wwsympa : :do remind(), 262
wwsympa : :do request topic(), 262
wwsympa : :do send mail(), 261
wwsympa : :do send me(), 262
wwsympa : :do sendpasswd(), 261
wwsympa : :do set(), 262
wwsympa : :do signoff(), 260
wwsympa : :do subscribe(), 259
wwsympa : :do tag topic by sender(),

262
wwsympa sudo wrapper.pl file, 88, 89
wwsympa url configuration keyword, 48,

133, 135

your infected msg.tt2 file, 217

	Presentation
	License
	Features
	Project directions
	History
	Authors and credits
	Mailing lists and support

	what does Sympa consist of ?
	Organization
	Binaries
	Configuration files
	Spools
	Roles and privileges
	(Super) listmasters
	(Robot) listmasters
	Privileged list owners
	(Basic) list owners
	Moderators (also called Editors)
	Subscribers (or list members)

	Installing Sympa
	Obtaining Sympa, related links
	Prerequisites
	System requirements
	Install Berkeley DB (NEWDB)
	Install PERL and CPAN modules
	Required CPAN modules
	Create a UNIX user

	Compilation and installation
	Choosing directory locations

	Robot aliases
	Logs

	Running Sympa
	sympa.pl
	INIT script
	Stopping Sympa and signals

	Upgrading Sympa
	Incompatible changes
	CPAN modules update
	Database structure update
	Preserving your customizations
	Running 2 Sympa versions on a single server
	Moving to another server

	Mail aliases
	Robot aliases
	List aliases
	Alias manager
	Virtual domains

	sympa.conf parameters
	Site customization
	domain
	email
	listmaster
	listmaster_email
	wwsympa_url
	soap_url
	spam_protection
	web_archive_spam_protection
	color_0, color_1 .. color_15
	dark_color light_color text_color bg_color error_color selected_color shaded_color
	logo_html_definition
	css_path
	css_url
	cookie
	create_list
	global_remind

	Directories
	home
	etc

	System related
	syslog
	log_level
	log_socket_type
	pidfile
	umask

	Sending related
	distribution_mode
	maxsmtp
	log_smtp
	max_size
	misaddressed_commands
	misaddressed_commands_regexp
	nrcpt
	avg
	sendmail
	sendmail_args
	sendmail_aliases
	rfc2369_header_fields
	remove_headers
	anonymous_headers_fields
	list_check_smtp
	list_check_suffixes
	urlize_min_size

	Quotas
	default_shared_quota
	default_archive_quota

	Spool related
	spool
	queue
	queuedistribute
	queuemod
	queuedigest
	queueauth
	queueoutgoing
	queuetopic
	queuebounce
	queuetask
	tmpdir
	sleep
	clean_delay_queue
	clean_delay_queuemod
	clean_delay_queueauth
	clean_delay_queuesubscribe
	clean_delay_queuetopic

	Internationalization related
	localedir
	supported_lang
	lang
	web_recode_to

	Bounce related
	verp_rate
	welcome_return_path
	remind_return_path
	return_path_suffix
	expire_bounce_task
	purge_orphan_bounces_task
	eval_bouncers_task
	process_bouncers_task
	minimum_bouncing_count
	minimum_bouncing_period
	bounce_delay
	default_bounce_level1_rate
	default_bounce_level2_rate
	bounce_email_prefix
	bounce_warn_rate
	bounce_halt_rate
	default_remind_task

	Tuning
	cache_list_config
	sympa_priority
	request_priority
	owner_priority
	default_list_priority

	Database related
	update_db_field_types
	db_type
	db_name
	db_host
	db_port
	db_user
	db_passwd
	db_timeout
	db_options
	db_env
	db_additional_subscriber_fields
	db_additional_user_fields
	purge_user_table_task

	Loop prevention
	loop_command_max
	loop_command_sampling_delay
	loop_command_decrease_factor
	loop_prevention_regex

	S/MIME configuration
	openssl
	capath
	cafile
	key_passwd
	chk_cert_expiration_task
	crl_update_task

	Antivirus plug-in
	antivirus_path
	antivirus_args
	antivirus_notify

	Sympa and its database
	Prerequisites
	Installing PERL modules
	Creating a sympa DataBase
	Database structure
	Database creation

	Setting database privileges
	Importing subscribers data
	Importing data from a text file
	Importing data from subscribers files

	Management of the include cache
	Extending database table format
	Sympa configuration

	WWSympa, Sympa's web interface
	Organization
	Web server setup
	wwsympa.fcgi access permissions
	Installing wwsympa.fcgi in your Apache server
	Using FastCGI

	wwsympa.conf parameters
	arc_path
	archive_default_index thrd | mail
	archived_pidfile
	bounce_path
	bounced_pidfile
	cookie_expire
	cookie_domain
	default_home
	icons_url
	log_facility
	mhonarc
	htmlarea_url
	password_case sensitive | insensitive
	title
	use_fast_cgi 0 | 1

	MhOnArc
	Archiving daemon
	Database configuration
	Logging in as listmaster

	Sympa RSS channel
	latest_lists
	active_lists
	latest_arc
	latest_d_read

	Sympa SOAP server
	Introduction
	Web server setup
	Sympa setup
	The WSDL service description
	Client-side programming
	Writting a Java client with Axis

	Authentication
	S/MIME and HTTPS authentication
	Authentication with email address, uid or alternate email address
	Generic SSO authentication
	CAS-based authentication
	auth.conf
	user_table paragraph
	ldap paragraph
	generic_sso paragraph
	cas paragraph

	Sharing WWSympa authentication with other applications
	Provide a Sympa login form in another application

	Authorization scenarios
	rules specifications
	LDAP Named Filters
	Definition
	Search Condition

	scenario inclusion
	Hidding scenario files

	virtual host
	How to create a virtual host
	robot.conf
	Robot customization

	Managing multiple virtual hosts

	Interaction between Sympa and other applications
	Soap
	RSS channel
	Sharing WWSympa authentication with other applications
	Sharing data with other applications
	Subscriber count

	Customizing Sympa/WWSympa
	Template file format
	Site template files
	helpfile.tt2
	lists.tt2
	global_remind.tt2
	your_infected_msg.tt2

	Web template files
	Internationalization
	Sympa internationalization
	List internationalization
	User internationalization

	Topics
	Authorization scenarios
	Loop detection
	Tasks
	List task creation
	Global task creation
	Model file format
	Model file examples

	Mailing list definition
	Mail aliases
	List configuration file
	Examples of configuration files
	Subscribers file
	Info file
	Homepage file
	Data inclusion file
	List template files
	welcome.tt2
	bye.tt2
	removed.tt2
	reject.tt2
	invite.tt2
	remind.tt2
	summary.tt2
	list_aliases.tt2

	Stats file
	List model files
	remind.annual.task
	expire.annual.task

	Message header and footer
	Archive directory

	List creation, edition and removal
	List creation
	Data for list creation
	XML file format

	List families
	List creation on command line with sympa.pl
	Creating and editing mailing using the web
	List creation on the Web interface
	Who can create lists on the Web interface
	typical list profile and Web interface
	List edition

	Removing a list

	Lists Families
	Family concept
	Using family
	Definition
	Instantiation
	Modification
	Closure
	Adding one list
	Removing one list
	Modifying one list
	List parameters edition in a family context

	List configuration parameters
	List description
	editor
	editor_include
	host
	lang
	owner
	owner_include
	subject
	topics
	visibility

	Data source related
	user_data_source
	ttl
	include_list
	include_remote_sympa_list
	include_sql_query
	include_ldap_query
	include_ldap_2level_query
	include_file
	include_remote_file

	Command related
	subscribe
	unsubscribe
	add
	del
	remind
	remind_task
	expire_task
	send
	review
	shared_doc

	List tuning
	reply_to_header
	max_size
	anonymous_sender
	custom_header
	rfc2369_header_fields
	loop_prevention_regex
	custom_subject
	footer_type
	digest
	digest_max_size
	available_user_options
	default_user_options
	msg_topic
	msg_topic_keywords_apply_on
	msg_topic_tagging
	cookie
	priority

	Bounce related
	bounce
	bouncers_level1
	bouncers_level2
	welcome_return_path
	remind_return_path

	Archive related
	archive
	web_archive
	archive_crypted_msg

	Spam protection
	spam_protection
	web_archive_spam_protection

	Intern parameters
	family_name
	latest_instantiation

	Reception mode
	Message topics
	Message topic definition in a list
	Subscribing to message topic for list subscribers
	Message tagging

	Shared documents
	The three kind of operations on a document
	The description file
	Structure of description files

	The predefined authorization scenarios
	The public scenario
	The private scenario
	The scenario owner
	The scenario editor

	Access control
	Listmaster and privileged owners
	Special case of the shared directory
	General case

	Shared document actions
	Template files
	d_read.tt2
	d_editfile.tt2
	d_control.tt2
	d_upload.tt2
	d_properties.tt2

	Bounce management
	VERP

	Antivirus
	Using Sympa with LDAP
	Sympa with S/MIME and HTTPS
	Signed message distribution
	Use of S/MIME signature by Sympa itself
	Use of S/MIME encryption
	S/Sympa configuration
	Installation
	configuration in sympa.conf
	configuration to recognize S/MIME signatures
	distributing encrypted messages

	Managing certificates with tasks
	chk_cert_expiration.daily.task model
	crl_update.daily.task model

	Using Sympa commands
	User commands
	Owner commands
	Moderator commands

	Internals
	mail.pm
	public functions
	private functions

	List.pm
	Functions for message distribution
	Functions for template sending
	Functions for service messages
	Functions for message notification
	Functions for topic messages
	Scenario evaluation
	Structure and access to list configuration parameters

	sympa.pl
	Commands.pm
	Commands processing
	tools for command processing

	wwsympa.fcgi
	report.pm
	Message diffusion
	Mail commands
	Web commands

	tools.pl
	Message.pm

