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Rapid Optimization Library (ROL)

* ROLis a Trilinos package for large-scale continuous
optimization, a.k.a. nonlinear programming (NLP).

* Available in Trilinos since 10/21/2014.

® ROLincludes:

* Arewrite and consolidation of existing optimization tools in Trilinos:
Aristos, MOOCHO, Optipack, Globipack.

* Hardened, production-ready algorithms for unconstrained and
equality-constrained continuous optimization.

* Methods for efficient handling of inequality constraints.

* A unified interface for simulation-based optimization.

* New methods for efficient handling of inexact computations.
* New methods for optimization under uncertainty.
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Motivation

* Optimization of differentiable simulated processes:
e partial differential equations (PDEs)
 differential algebraic equations (DAEs)
* network equations (gas pipelines, electrical networks)
* Inverse problems, model calibration.
* Optimal design, including topology and shape optimization.
e Optimal control, optimal design of experiments, etc.

* Parameter/design/control spaces can be very large, often
related to the size of the computational mesh (PDEs) or the
size of the device network or graph (DAEs).

e Simulated processes may be subject to uncertainty.




Motivation

 Example cost of deterministic optimization, in terms of
“simulation units”, such as nonlinear PDE/DAE solves:

Size of parameter space
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e We want derivative-based methods.
 We want embedded and matrix-free methods:

* Direct access to application data structures: vectors, etc.
* Direct use of application methods: (non)linear solvers, etc. .




A few current use cases ) ..

Inverse problems in acoustics / elasticity. Estimating basal friction of ice sheets.
* Interface to the Sierra-SD structural * Interface to LifeV Project (www.lifev.org).

dynamics code (Sandia, Org. 1500).
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* Interface to DGM, a high-order DG code Calibration of electrical device models.
(Sandia, Org. 1400). « Interface to Xyce circuit simulator.
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Mathematical abstraction

e Straight from ROL's documentation:

ROL is used for the numerical solution of smooth optimization problems

min f(x)
subject to ¢(xz) =0,
a<x<b,

where:

e f: X — R is aFréchet differentiable functional,

e c: X — C is a Fréchet differentiable operator,

e X and C are Banach spaces of functions, and

e a < x < b defines pointwise (componentwise) bounds on x.

* This abstraction is a valuable guiding principle.
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Problem formulations

* ROL supports four basic NLP problem types:
Type-U: Unconstrained. Type-B: Bound constrained.
min f(z)
xZr

min f(x)
’ subject to a <z <b

Type-E: Equality constrained. Type-EB: Equalities + bounds.
min x
min f(x) z f(z)
i
: bject t —
subject to ¢(z) =0 subject to  c(x) =0
a<x<b
Note: min f(z) min f(z)
subject to  ¢(z) <0 — subject to ¢(z) +s=0,
s>0.




Design of ROL ) .

Application programming interface

Linear algebra
interface

Algorithmic

Functional interface .
interface

Objective : StatusTest
Vector BoundConstraint Milldn?eov%rr'e Step
EqualityConstraint DefaultAlgorithm

Methods — Implementations of Step instances
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Linear algebra interface

« ROL::Vector is designed to enable direct use of application
data structures (serial, parallel, in-memory, disk-based, etc.).

e Methods:

plus, scale, dot, norm, clone (pure virtual)
axpy, zero, set
basis, dimension (optional)

* Nothing new. History: HCL/RVL, TSFCore, Thyra.

* Recent applications of ROL require dual-space operations:
dual

* Note: Other Trilinos packages have similar linear algebra
interfaces, but may not be able to take advantage of dual-
space operations, such as Riesz maps.
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0
z<b
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« ROL::Objective provides the objective function interface.

 Methods:
value (pure virtual)
gradient, hessVec (virtual)
update, invHessVec, precond, dirDeriv (optional)

* We can use finite differences to approximate missing
derivative information (default implementation).

* For best performance, implement analytic derivatives.
* Tools: checkGradient, checkHessVec, checkHessSym.

« ROL::BoundConstraint enables pointwise bounds on
optimization variables, in support of projected gradient,
projected Newton, and primal-dual active set methods.

11
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« ROL::EqualityConstraint enables equality constraints.

* Methods:
value (pure virtual)
applyJacobian, applyAdjointJacobian, (virtual)
applyAdjointHessian
update, applyPreconditioner, (optional)
solveAugmentedSystem

* We can use finite differences to approximate missing
derivative information (default implementation).

* For best performance, implement analytic derivatives.
* Tools: checkApplyJacobian, etc.
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min f()

Functional interface  cujectto o

z) =0
a<x<b
* Documentation excerpt:
7temp|ate<class Real >
void ROL::EqualityConstraint< Real >::applyAdjointHessian ( Vector< Real > & ahuv,

const Vector< Real > & u,
const Vector< Real > & v,
const Vector< Real > & X,
Real & tol
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Apply the derivative of the adjoint of the constraint Jacobian at x to vector u in direction v, according to

Parameters
[out] ahuv is the result of applying the derivative of the adjoint of the constraint Jacobian at x to vector u in direction v;
a dual optimization-space vector
[in] u is the direction vector; a dual constraint-space vector
[in] v is an optimization-space vector
[in] X is the constraint argument; an optimization-space vector

[in,out] tol is atolerance for inexact evaluations; currently unused

On return, ahuv = ¢”(x)(v, -)*u, where u € C*, v € X, and ahuv € X*.

The default implementation is a finite-difference approximation based on the adjoint Jacobian.

v ()W, )*u.
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SimOpt: The middleware for e
engineering optimization

 Many simulation-based Type-E problems have the form:

min f(u,z) subjectto c(u,z)=0

* udenote simulation variables (state variables, basic, Sim)
* zdenote optimization variables (controls, parameters, nonbasic, Opt)

* A common Type-U reformulation, by nonlinear elimination, is:

mzin f(u(z),z) where u(z) solves c(u,z) =0

* For these cases, the SimOpt interface enables direct use of

methods for both unconstrained and constrained problems.
14
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engineering optimization

Objective_SimOpt

value(u,z)
gradient_1(g,u,z)
gradient_2(q,u,z)

hessVec_11(hv,v,u,z)
hessVec_12(hv,v,u,z)
hessVec_21(hv,v,u,z)
hessVec_22(hv,v,u,z)

Note:

1=Sim=u
2=0pt=2z

EqualityConstraint_SimOpt

value(c,u,z)

applyJacobian_1(jv,v,u,z)
applyJacobian_2(jv,v,u,z)
applyInverseJacobian_1(ijv,v,u,z)
applyAdjointJacobian_1(ajv,v,u,z)
applyAdjointJacobian_2(ajv,v,u,z)
applyInverseAdjointJacobian_1(iajv,v,u,z)
applyAdjointHessian_11(ahwv,w,v,u,z)
applyAdjointHessian_12(ahwv,w,v,u,z)
applyAdjointHessian_21(ahwv,w,v,u,z)
applyAdjointHessian_22(ahwv,w,v,u,z)
solve(u,z)

15
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SimOpt: Benefits ) g

* Streamlined modular implementation for a very large class of
engineering optimization problemes.

* Implementation verification through a variety of ROL tests:
* Finite difference checks with high granularity.
* Consistency checks for operator inverses and adjoints.

* Access to all optimization methods through a single interface.

* Enables future ROL interfaces for advanced solution
checkpointing and restarting, closer integration with
application-specific time integrators, etc.

16




Algorithmic interface

* Modular design:
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el stol
_ _ParameterList
ROL::StatusTest | | ROL::Step ROL::Objective ROL::E/B/Constraint
V
ROL::Algorithm [7731 run

17
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Algorithmic interface

* Anillustration, sans details, using a sequential quadratic
programming (SQP) step for Type-E formulations:

RCP<Objective<Real T> > obj;
RCP<EqualityConstraint<Real T> > constr;

RCP<CompositeStepSQP<Real T> > step(parlist);
RCP<StatusTestSQP<Real T> > status(gtol, ctol, stol, maxit);

DefaultAlgorithm<Real T> algo(step, status);
x.zero(); vl.zero();
algo.run(x, vl, *obj, *constr);

18




Methods — Part 1 ) i

* Type-U (unconstrained):
* Globalization: LineSearchStep and TrustRegionStep.

* Gradient descent, quasi-Newton (limited-memory BFGS, DFP, Barzilai-
Borwein), nonlinear CG (6 variants), inexact Newton (including finite
difference hessVecs), Newton, with line searches and trust regions.

* Trust-region methods supporting inexact objective functions and
inexact gradient evaluations. Enables adaptive and reduced models.

* Type-B (bound constrained):
* Projected gradient and projected Newton methods.
* Primal-dual active set methods.

19
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Methods — Part 2 ) i

e Type-E (equality constrained):
* Sequential quadratic programming (SQP) with trust regions, supporting
inexact linear system solves.

* A hierarchy of full-space SQP methods, based on the constraint null-
space representation (summer 2015):
(1) sim/opt splitting with simple linearized forward and adjoint solves,
(2) simple optimality systems with forward/adjoint preconditioners,
(3) full KKT (optimality) system solves.

* Type-EB (equality + bound constrained):
* Augmented Lagrangian methods.
e Semismooth Newton methods (summer 2015).
* Interior-point methods (summer 2015).

20



Methods — Part 3 il

e Optimization under uncertainty:
min o(f(z,9))

min o(f(u(z,9),2,9)) where u(z,?) solves c(u, z,19) =0

z

* Compute controls/designs that are risk-averse or robust to uncertainty
in the parameters . Here o is some risk measure.

e Risk measures: Conditional value-at-risk (CVaR), Expectation (mean),
Mean plus deviation, Mean plus variance, Exponential disutility.

* Incorporate sampling and adaptive quadrature approaches from
uncertainty quantification. Flexible sampling interface through
SampleGenerator and BatchManager.

e Control inexactness and adaptivity through trust-region framework.

21
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Research focus

* Optimization under uncertainty, risk-averse optimization.
* Treatment of general constraints in large-scale optimization.
* Sequential subspace methods, continuation, regularization.

* |nexact and adaptive methods for large-scale optimization.

* Tighter application integration through SimOpt.

22




Miscellaneous

i\

* Efficient computations, restarts and checkpointing enabled
through AlgorithmState and StepState.

* Flexible output using user-defined streams.

e Soft and hard iteration updates are possible, for efficiency.

* Comingin 2015:

Specialized techniques for topology optimization, such as
generalizations of method of moving asymptotes (MMA).

Computing conservative estimates of probability of failure,
through buffered probabilities.

Methods for general constraints.
Hierarchy of full-space SQP methods.
User’s guide.
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